Uniqueness of Ginzburg-Rallis models: The Archimedean case
Authors:
Dihua Jiang, Binyong Sun and Chen-Bo Zhu
Journal:
Trans. Amer. Math. Soc. 363 (2011), 2763-2802
MSC (2000):
Primary 22E46; Secondary 11F70
DOI:
https://doi.org/10.1090/S0002-9947-2010-05285-7
Published electronically:
December 21, 2010
MathSciNet review:
2763736
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we prove the uniqueness of Ginzburg-Rallis models in the Archimedean case. As a key ingredient, we introduce a new descent argument based on two geometric notions attached to submanifolds, which we call metrical properness and unipotent -incompatibility.
- [AG1] A. Aizenbud and D. Gourevitch, Schwartz functions on Nash manifolds, Int. Math. Res. Notices 2008, no. 5, Art. ID mm157, 37pp. MR 2418286 (2010g:46124)
- [AG2] A. Aizenbud and D. Gourevitch, Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean analog of Jacquet-Rallis's theorem, Duke Math. J. 149, no. 3 (2009), 509-567. MR 2553879
- [AG3]
A. Aizenbud and D. Gourevitch, Multiplicity one theorem for
, Selecta Mathematica 15, no. 2 (2009), 271-294. MR 2529937
- [AGJ09] A. Aizenbud, D. Gourevitch and H. Jacquet, Uniqueness of Shalika functionals: The Archimedean case, Pacific J. Math. 243 (2009), no. 2, 201-212.
- [AGRS] A. Aizenbud, D. Gourevitch, S. Rallis and G. Schiffmann, Multiplicity One Theorems, Annals Math. 172 (2010), no. 2, 1407-1434. MR 2680495
- [AGS07]
A. Aizenbud, D. Gourevitch and E. Sayag,
is a Gelfand pair for any local field
, Compositio Math. 144 (2008), no. 6, 1504-1524. MR 2474319 (2009k:22022)
- [BR07]
E. M. Baruch and S. Rallis, On the uniqueness of Fourier Jacobi models for representations of
, Representation Theory 11 (2007), 1-15. MR 2276364 (2007m:22011)
- [C89]
W. Casselman, Canonical extensions of Harish-Chandra modules to representations of
, Canad. Jour. Math. 41 (1989), 385-438. MR 1013462 (90j:22013)
- [CHM00]
W. Casselman, H. Hecht, and D. Mili
, Bruhat filtrations and Whittaker vectors for real groups, The Mathematical Legacy of Harish-Chandra, Proc. Symp. Pure Math., vol. 68, Amer. Math. Soc., Providence, RI, 2000. MR 1767896 (2002b:22023)
- [C91] F. du Cloux, Sur les représentations différentiables des groupes de Lie algébriques, Ann. Sci. Ecole Norm. Sup. 24 (1991), no. 3, 257-318. MR 1100992 (92j:22026)
- [GGP09] W. Gan, B. Gross and D. Prasad, Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups. arXiv:0909.2999
- [GJ]
D. Ginzburg and D. Jiang, Notes on Periods of Eisenstein series on
, in preparation.
- [GJR04]
D. Ginzburg, D. Jiang and S. Rallis, On the nonvanishing of the central value of the Rankin-Selberg
-functions, Jour. Amer. Math. Soc. 17 (2004), no. 3, 679-722. MR 2053953 (2005g:11078)
- [GJR05]
D. Ginzburg, D. Jiang and S. Rallis, On the nonvanishing of the central value of the Rankin-Selberg
-functions. II, Automorphic representations,
-functions and applications: progress and prospects, 157-191, Ohio State Univ. Math. Res. Inst. Publ., 11, de Gruyter, Berlin, 2005. MR 2192823 (2006m:11072)
- [GJR09]
D. Ginzburg, D. Jiang and S. Rallis, Models for certain residual representations of unitary groups, Automorphic forms and
-functions I. Global aspects, 125-146, Contemp. Math., 488, Amer. Math. Soc., Providence, RI, 2009. MR 2522030
- [GR00]
D. Ginzburg and S. Rallis, The exterior cube
-function for
, Compositio Math. 123 (2000), no. 3, 243-272. MR 1795291 (2001j:11025)
- [GN09] H. Glöckner and K.-H. Neeb, Infinite-dimensional Lie groups: General Theory and Main Examples, Graduate Texts in Mathematics, Springer-Verlag, book to appear.
- [GP92]
B. Gross and D. Prasad, On the decomposition of a representation of
when restricted to
, Canad. Jour. Math. 44 (1992), no. 5, 974-1002. MR 1186476 (93j:22031)
- [GP94]
B. Gross and D. Prasad, On irreducible representations of
, Canad. Jour. Math. 46 (1994), no. 5, 930-950. MR 1295124 (96c:22028)
- [HK04] M. Harris and S. Kudla, On a conjecture of Jacquet, Contributions to automorphic forms, geometry, and number theory, 355-371, Johns Hopkins Univ. Press, Baltimore, MD, 2004. MR 2058614 (2005g:11081)
- [JR96] H. Jacquet and S. Rallis, Uniqueness of linear periods, Compositio Math. 102 (1996), no. 1, 65-123. MR 1394521 (97k:22025)
- [JS90]
H. Jacquet and J. Shalika, Exterior square
-functions, Automorphic forms, Shimura varieties, and
-functions, Vol. II (Ann Arbor, MI, 1988), 143-226, Perspect. Math., 11, Academic Press, Boston, MA, 1990. MR 1044830 (91g:11050)
- [J08] D. Jiang, Residues of Eisenstein series and related problems, Eisenstein Series and Applications, Progress in Math. 258, 187-204, 2008. MR 2402684 (2010a:11090)
- [JSZ09] D. Jiang, B. Sun and C.-B. Zhu, Uniqueness of Bessel models: The Archimedean case, Geom. Funct. Anal. 20 (2010), 690-709.
- [L01]
H.Y. Loke, Trilinear forms of
, Pac. Jour. Math. 197 (2001), 119-144. MR 1810211 (2002b:22028)
- [LZ97] S.T. Lee and C.-B. Zhu, Degenerate principal series and local theta correspondence II, Israel Jour. Math. 100 (1997), 29-59. MR 1469104 (99c:22022)
- [N06] C. Nien, Models of representations of general linear groups over p-adic fields, Ph.D. Thesis, University of Minnesota, ProQuest LLC, Ann. Arbor, MI, 2006. MR 2709083
- [P90]
D. Prasad, Trilinear forms for representations of
and local epsilon factors, Compositio Math. 75 (1990), 1-46. MR 1059954 (91i:22023)
- [Pr89]
T. Przebinda, The oscillator duality correspondence for the pair
, Mem. Amer. Math. Soc. 403 (1989), 1-105. MR 979944 (90f:22019)
- [S74]
J.A. Shalika, Multiplicity one theorem for
, Ann. Math. 100 (1974), 171-193. MR 0348047 (50:545)
- [S87] M. Shiota, Nash manifolds, Lect. Notes in Math., vol. 1269, Springer-Verlag, 1987. MR 904479 (89b:58011)
- [SZ1] B. Sun and C.-B. Zhu, A general form of Gelfand-Kazhdan criterion. ArXiv:0903.1409
- [SZ2] B. Sun and C.-B. Zhu, Multiplicity One Theorems: The Archimedean case. ArXiv:0903.1413
- [T67] F. Treves, Topological vector spaces, distributions and kernels, Academic Press, New York, 1967. MR 0225131 (37:726)
- [W88] N. Wallach, Real Reductive Groups I, Academic Press, San Diego, 1988. MR 929683 (89i:22029)
- [W92] N. Wallach, Real Reductive Groups II, Academic Press, San Diego, 1992. MR 1170566 (93m:22018)
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 22E46, 11F70
Retrieve articles in all journals with MSC (2000): 22E46, 11F70
Additional Information
Dihua Jiang
Affiliation:
School of Mathematics, University of Minnesota, 206 Church Street, S.E., Minneapolis, Minnesota 55455
Email:
dhjiang@math.umn.edu
Binyong Sun
Affiliation:
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, People’s Republic of China
Email:
sun@math.ac.cn
Chen-Bo Zhu
Affiliation:
Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543
Email:
matzhucb@nus.edu.sg
DOI:
https://doi.org/10.1090/S0002-9947-2010-05285-7
Keywords:
Ginzburg-Rallis models,
tempered generalized functions,
descent
Received by editor(s):
April 16, 2009
Received by editor(s) in revised form:
December 22, 2009
Published electronically:
December 21, 2010
Additional Notes:
The first author was supported in part by NSF (USA) grant DMS–0653742 and by a Distinguished Visiting Professorship at the Academy of Mathematics and System Sciences, the Chinese Academy of Sciences
The second author was supported by NUS-MOE grant R-146-000-102-112 and by NSFC grants 10801126 and 10931006
The third author was supported by NUS-MOE grant R-146-000-102-112
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.