Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Group actions on geodesic Ptolemy spaces

Authors: Thomas Foertsch and Viktor Schroeder
Journal: Trans. Amer. Math. Soc. 363 (2011), 2891-2906
MSC (2010): Primary 51F99, 53C23
Published electronically: January 7, 2011
MathSciNet review: 2775791
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study geodesic Ptolemy metric spaces $ X$ which allow proper and cocompact isometric actions of crystallographic or, more generally, virtual polycyclic groups. We show that $ X$ is equivariantly roughly isometric to a Euclidean space.

References [Enhancements On Off] (What's this?)

  • [B] M. Bourdon, Sur le birapport au bord des $ {\rm CAT}(-1)$-espaces, Inst. Hautes Études Sci. Publ. Math. No. 83 (1996), 95-104. MR 1423021 (97k:58123)
  • [BH] M. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer-Verlag, Berlin, 1999. xxii+643 pp. MR 1744486 (2000k:53038)
  • [BFW] S.M. Buckley, K. Falk and D.J. Wraith, Ptolemaic and $ \operatorname{CAT}(0)$, Glasg. Math. J. 51 (2009), no. 2, 301-314. MR 2500753 (2010e:53070)
  • [Bu] D. Burago, Periodic Metrics, Adv. Soviet Math. 9 (1992), 205-210. MR 1166203 (93c:53029)
  • [BuI] D. Burago and S. Ivanov, Riemannian tori without conjugate points, Geom. Funct. Anal. 4 no. 3 (1994), 259-269. MR 1274115 (95h:53049)
  • [CS] Ch. Croke and V. Schroeder, The fundamental group of compact manifolds without conjugate points, Comment. Math. Helvetici 61 (1986), 161-175. Free available via MR 847526 (87i:53060)
  • [FLS] Th. Foertsch, A. Lytchak and V. Schroeder, Nonpositive curvature and the Ptolemy inequality, Int. Math. Res. Not. IMRN 2007, no. 22, 15 pp. MR 2376212 (2009d:53049a)
  • [FS] Th. Foertsch and V. Schroeder, Hyperbolicity, $ \operatorname{CAT}(-1)$-spaces and the Ptolemy Inequality, to appear in Math. Annalen.
  • [G] M. Gromov, Asymptotic invariants of infinite groups, Geometric Group Theory, Proc. of the Symposium held in Susses 1991, Vol. 2, edited by A. Niblo and M.Roller, Cambridge Univ. Press, 1993. MR 1253544 (95m:20041)
  • [Ha] U. Hamenstädt, A new description of the Bowen-Margulis measure, Ergodic Theory Dynam. Systems 9 (1989), 455-464. MR 1016663 (91b:58191)
  • [HL] P. Hitzelberger and A. Lytchak, Spaces with many affine functions, Proc. Amer. Math. Soc. 135, Number 7 (2007), 2263-2271. MR 2299504 (2008g:53045)
  • [R] D. Robinson, Finiteness conditions and generalized soluble groups, Part 2, Springer, Berlin Heidelberg New York, 1972. MR 0332990 (48:11315)
  • [Sch] I. J. Schoenberg, A remark on M. M. Day's characterization of inner-product spaces and a conjecture of L. M. Blumenthal, Proc. Amer. Math. Soc. 3 (1952), 961-964. MR 0052035 (14:564c)
  • [W] J. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967. MR 0217740 (36:829)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 51F99, 53C23

Retrieve articles in all journals with MSC (2010): 51F99, 53C23

Additional Information

Thomas Foertsch
Affiliation: Mathematisches Institut, Universität Bonn, Beringstrasse 1, D-53115 Bonn, Germany

Viktor Schroeder
Affiliation: Institut für Mathematik, Universität Zürich, Winterthurer Strasse 190, CH-8057 Zürich, Switzerland

Received by editor(s): December 16, 2008
Published electronically: January 7, 2011
Additional Notes: Both authors were supported by the Swiss National Science Foundation, grant 200021-115919
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society