Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Reconstruction algebras of type $ A$

Author: Michael Wemyss
Journal: Trans. Amer. Math. Soc. 363 (2011), 3101-3132
MSC (2000): Primary 16S38, 13C14, 14E15
Published electronically: January 25, 2011
MathSciNet review: 2775800
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We introduce a new class of algebras, called reconstruction algebras, and present some of their basic properties. These non-commutative rings dictate in every way the process of resolving the Cohen-Macaulay singularities $ \mathbb{C}^2/G$ where $ G=\frac{1}{r}(1,a)\leq GL(2,\mathbb{C})$.

References [Enhancements On Off] (What's this?)

  • [BG02] K. A. Brown and K. R. Goodearl, Lectures on algebraic quantum groups, Advanced Courses in Mathematics. CRM Barcelona (2002), 348 pp. MR 1898492 (2003f:16067)
  • [BH84] K. A. Brown and C. R. Hajarnavis, Homologically homogeneous rings, Transactions of the American Mathematical Society 281 (1984), no. 1, 197-208. MR 719665 (85e:16046)
  • [BKR01] T. Bridgeland, A. King, and M. Reid, The McKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535-554. MR 1824990 (2002f:14023)
  • [Bri06] T. Bridgeland, Stability conditions on a non-compact Calabi-Yau threefold, Commun. Math. Phys 266 (2006), 715-733. MR 2238896 (2007d:14075)
  • [Cra07] A. Craw, The special McKay correspondence as a derived equivalence, arXiv:0704.3627 (2007).
  • [CS98] H. Cassens and P. Slodowy, On Kleinian singularities and quivers, Progr. Math. 162 (1998), 263-288. MR 1652478 (99k:14003)
  • [Eis95] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics, Springer-Verlag 150 (1995), xvi+785 pp. MR 1322960 (97a:13001)
  • [Esn85] H. Esnault, Reflexive modules on quotient surface singularities, J. Reine Angrew. Math. 362 (1985), 63-71. MR 809966 (87e:14033)
  • [GW04] K. R. Goodearl and R. B. Warfield, Jr., An introduction to noncommutative Noetherian rings. Second edition. LMS Student Texts 61 (2004), xxiv+344 pp. MR 2080008 (2005b:16001)
  • [HdB] L. Hille and M. Van den Bergh, Fourier-Mukai transforms, Handbook of tilting theory, LMS Lecture Note Ser. 332 (2007), 147-177. MR 2384610 (2009f:14031)
  • [Ish02] A. Ishii, On the McKay correspondence for a finite small subgroup of $ \textnormal{{GL}}(2,\mathbb{C})$, J. Reine Angew. Math. 549 (2002), 221-233. MR 1916656 (2003d:14021)
  • [Kid01] R. Kidoh, Hilbert schemes and cyclic quotient singularities, Hokkaido Math. J. 30 (2001), 91-103. MR 1815001 (2001k:14009)
  • [Kin94] A. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45 (1994), no. 180, 515-530. MR 1315461 (96a:16009)
  • [Kin97] -, Tilting bundles on some rational surfaces, preprint available on the Internet at the page$ \sim$masadk/papers/ (1997).
  • [Mac09] M. Macleod Generalizing the Cohen-Macaulay condition and other homological properties, Ph.D. thesis, (2010).
  • [Nee92] A. Neeman, The connection between the K-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. Ecole Norm. Sup. (4) 25 (1992), no. 5, 547-566. MR 1191736 (93k:18015)
  • [Nee96] -, The Grothendieck duality theorem via Bousfield's Techniques and Brown Representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205-236. MR 1308405 (96c:18006)
  • [QS06] C. Quarles and S. Paul Smith, On an example of Leuschke, private communication (2006).
  • [Rai87] J. Rainwater, Global dimension of fully bounded noetherian rings, Comm. Algebra 15 (1987), no. 10, 2143-2156. MR 909958 (89b:16032)
  • [Rei97] M. Reid, Surface cyclic quotient singularities and Hirzebruch-Jung resolutions, available on the Internet at the page$ \sim$miles/surf/ (1997).
  • [Rie74] O. Riemenschneider, Deformationen von Quotientensingularitäten (nach zyklischen Gruppen), Math. Ann. 209 (1974), 211-248. MR 0367276 (51:3518)
  • [Rie77] -, Invarianten endlicher Untergruppen, Math. Z 153 (1977), 37-50. MR 0447230 (56:5545)
  • [Rie03] -, Special representations and the two-dimensional McKay correspondence, Hokkaido Math. J. 32 (2003), no. 2, 317-333. MR 1996281 (2004g:14016)
  • [SdB06] J. T. Stafford and M. Van den Bergh, Noncommutative resolutions and rational singularities, Special volume in honor of Melvin Hochster, Michigan Math. J. 57 (2008), 659-674. MR 2492474 (2010d:14002)
  • [Van04a] M. Van den Bergh, Non-commutative crepant resolutions, The legacy of Niels Henrik Abel, Springer, Berlin (2004), 749-770. MR 2077594 (2005e:14002)
  • [Van04b] -, Three-dimensional flops and non-commutative rings, Duke Math. J. 122 (2004), no. 3, 423-455. MR 2057015 (2005e:14023)
  • [Wem08] M. Wemyss, The $ {GL}(2,\mathbb{C})$ McKay Correspondence, arXiv:0809.1973 (2008).
  • [Wun87] J. Wunram, Reflexive modules on cyclic quotient surface singularities, Lecture Notes in Mathematics, Springer-Verlag 1273 (1987), 221-231. MR 915177 (88m:14023)
  • [Wun88] -, Reflexive modules on quotient surface singularities, Math. Ann. 279 (1988), no. 4, 583-598. MR 926422 (89g:14029)
  • [Yos90] Y. Yoshino, Cohen-Macaulay modules over Cohen-Macaulay rings, LMS Lecture Notes 146 (1990), 177pp.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16S38, 13C14, 14E15

Retrieve articles in all journals with MSC (2000): 16S38, 13C14, 14E15

Additional Information

Michael Wemyss
Affiliation: Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
Address at time of publication: School of Mathematics, James Clerk Maxwell Building, The Kings’ Buildings, Mayfield Road, Edinburgh, EH9 3J2, United Kingdom

Received by editor(s): September 15, 2008
Received by editor(s) in revised form: May 19, 2009
Published electronically: January 25, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society