Sharp results in the integralform JohnNirenberg inequality
Authors:
L. Slavin and V. Vasyunin
Journal:
Trans. Amer. Math. Soc. 363 (2011), 41354169
MSC (2010):
Primary 42A05, 42B35, 49K20
Published electronically:
March 9, 2011
MathSciNet review:
2792983
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider the strong form of the JohnNirenberg inequality for the based BMO. We construct explicit Bellman functions for the inequality in the continuous and dyadic settings and obtain the sharp constant, as well as the precise bound on the inequality's range of validity, both previously unknown. The results for the two cases are substantially different. The paper not only gives another instance in the short list of such explicit calculations, but also presents the Bellman function method as a sequence of clear steps, adaptable to a wide variety of applications.
 1.
D.
L. Burkholder, Boundary value problems and sharp inequalities for
martingale transforms, Ann. Probab. 12 (1984),
no. 3, 647–702. MR 744226
(86b:60080)
 2.
Charles
Fefferman, Characterizations of bounded mean
oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. MR 0280994
(43 #6713), 10.1090/S000299041971127635
 3.
F.
John and L.
Nirenberg, On functions of bounded mean oscillation, Comm.
Pure Appl. Math. 14 (1961), 415–426. MR 0131498
(24 #A1348)
 4.
A.
A. Korenovskiĭ, The connection between mean oscillations and
exact exponents of summability of functions, Mat. Sb.
181 (1990), no. 12, 1721–1727 (Russian);
English transl., Math. USSRSb. 71 (1992), no. 2,
561–567. MR 1099524
(92b:26019)
 5.
Antonios
D. Melas, The Bellman functions of dyadiclike maximal operators
and related inequalities, Adv. Math. 192 (2005),
no. 2, 310–340. MR 2128702
(2005k:42052), 10.1016/j.aim.2004.04.013
 6.
F.
L. Nazarov and S.
R. Treĭl′, The hunt for a Bellman function:
applications to estimates for singular integral operators and to other
classical problems of harmonic analysis, Algebra i Analiz
8 (1996), no. 5, 32–162 (Russian, with Russian
summary); English transl., St. Petersburg Math. J. 8
(1997), no. 5, 721–824. MR 1428988
(99d:42026)
 7.
F.
Nazarov, S.
Treil, and A.
Volberg, Bellman function in stochastic control and harmonic
analysis, Systems, approximation, singular integral operators, and
related topics (Bordeaux, 2000) Oper. Theory Adv. Appl., vol. 129,
Birkhäuser, Basel, 2001, pp. 393–423. MR 1882704
(2003b:49024)
 8.
F. Nazarov, S. Treil, A. Volberg. The Bellman functions and twoweight inequalities for Haar multipliers. 1995, Preprint, MSU, pp. 125.
 9.
F.
Nazarov, S.
Treil, and A.
Volberg, The Bellman functions and twoweight
inequalities for Haar multipliers, J. Amer.
Math. Soc. 12 (1999), no. 4, 909–928. MR 1685781
(2000k:42009), 10.1090/S0894034799003100
 10.
Leonid
Slavin, Bellman function and BMO, ProQuest LLC, Ann Arbor, MI,
2004. Thesis (Ph.D.)–Michigan State University. MR
2706427
 11.
Leonid
Slavin and Alexander
Volberg, The 𝑠function and the exponential integral,
Topics in harmonic analysis and ergodic theory, Contemp. Math.,
vol. 444, Amer. Math. Soc., Providence, RI, 2007,
pp. 215–228. MR 2423630
(2009c:26048), 10.1090/conm/444/08582
 12.
T. Tao. Bellman function and the JohnNirenberg inequality, Preprint, http://www. math.ucla.edu/˜tao/˜preprints/harmonic.html.
 13.
V.
I. Vasyunin, The exact constant in the inverse
Hölder inequality for Muckenhoupt weights, Algebra i Analiz
15 (2003), no. 1, 73–117 (Russian, with Russian
summary); English transl., St. Petersburg Math. J.
15 (2004), no. 1,
49–79. MR
1979718 (2004h:42017), 10.1090/S1061002203008021
 14.
V. Vasyunin. The sharp constant in the JohnNirenberg inequality, Preprint POMI no. 20, 2003. http://www.pdmi.ras.ru/preprint/index.html
 15.
V.
Vasyunin and A.
Vol′berg, The Bellman function for the simplest
twoweight inequality: an investigation of a particular case,
Algebra i Analiz 18 (2006), no. 2, 24–56
(Russian, with Russian summary); English transl., St.
Petersburg Math. J. 18 (2007), no. 2, 201–222. MR 2244935
(2007k:47053), 10.1090/S1061002207009533
 16.
A. Volberg. Bellman approach to some problems in harmonic analysis. Équations aux Dérivées Partielles, Exposé n. XX, 2002.
 1.
 D. L. Burkholder. Boundary value problems and sharp inequalities for martingale transforms. Annals of Probability, Vol. 12 (1984), no. 3, pp. 647702. MR 744226 (86b:60080)
 2.
 C. Fefferman. Characterizations of bounded mean oscillations. Bull. Amer. Math. Soc., Vol. 77 (1971), pp. 587588. MR 0280994 (43:6713)
 3.
 F. John, L. Nirenberg. On functions of bounded mean oscillation. Comm. Pure Appl. Math., Vol. 14 (1961), pp. 415426. MR 0131498 (24:A1348)
 4.
 A. Korenovskii. The connection between mean oscillations and exact exponents of summability of functions. Math. USSRSb., Vol. 71 (1992), no. 2, pp. 561567. MR 1099524 (92b:26019)
 5.
 A. Melas. The Bellman functions of dyadiclike maximal operators and related inequalities. Advances in Mathematics, Vol. 192 (2005), no. 2, pp. 310340. MR 2128702 (2005k:42052)
 6.
 F. Nazarov, S. Treil. The hunt for Bellman function: Applications to estimates of singular integral operators and to other classical problems in harmonic analysis. Algebra i Analiz, Vol. 8 (1997), no. 5, pp. 32162. MR 1428988 (99d:42026)
 7.
 F. Nazarov, S. Treil, A. Volberg. Bellman function in stochastic control and harmonic analysis in Systems, Approximation, Singular integral operators, and related topics, ed. A Borichev, N. Nikolski, Operator Theory: Advances and Applications, Vol. 129, 2001, pp. 393424, Birkhauser Verlag. MR 1882704 (2003b:49024)
 8.
 F. Nazarov, S. Treil, A. Volberg. The Bellman functions and twoweight inequalities for Haar multipliers. 1995, Preprint, MSU, pp. 125.
 9.
 F. Nazarov, S. Treil, A. Volberg. The Bellman functions and twoweight inequalities for Haar multipliers. Journal of the American Mathematical Society, Vol. 12 (1999), no. 4, pp. 909928. MR 1685781 (2000k:42009)
 10.
 L. Slavin. Bellman function and BMO. Ph.D. thesis, Michigan State University, ProQuest LLC, Ann Arbor, MI, 2004. MR 2706427
 11.
 L. Slavin, A. Volberg. The function and the exponential integral. Topics in harmonic analysis and ergodic theory, pp. 215228, Contemp. Math., Vol. 444, Amer. Math. Soc., Providence, RI, 2007. MR 2423630 (2009c:26048)
 12.
 T. Tao. Bellman function and the JohnNirenberg inequality, Preprint, http://www. math.ucla.edu/˜tao/˜preprints/harmonic.html.
 13.
 V. Vasyunin. The sharp constant in the reverse Hölder inequality for Muckenhoupt weights. Algebra i Analiz, Vol. 15 (2003), no. 1, pp. 73117. MR 1979718 (2004h:42017)
 14.
 V. Vasyunin. The sharp constant in the JohnNirenberg inequality, Preprint POMI no. 20, 2003. http://www.pdmi.ras.ru/preprint/index.html
 15.
 V. Vasyunin, A. Volberg. The Bellman functions for a certain two weight inequality: The case study. Algebra i Analiz, Vol. 18 (2006), No. 2. MR 2244935 (2007k:47053)
 16.
 A. Volberg. Bellman approach to some problems in harmonic analysis. Équations aux Dérivées Partielles, Exposé n. XX, 2002.
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2010):
42A05,
42B35,
49K20
Retrieve articles in all journals
with MSC (2010):
42A05,
42B35,
49K20
Additional Information
L. Slavin
Affiliation:
Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 452210025
Email:
leonid.slavin@uc.edu
V. Vasyunin
Affiliation:
St. Petersburg Department of the V. A. Steklov Mathematical Institute, Russian Academy of Sciences, St. Petersburg, Russia
Email:
vasyunin@pdmi.ras.ru
DOI:
http://dx.doi.org/10.1090/S000299472011051123
Keywords:
Bellman function method,
John–Nirenberg inequality,
BMO
Received by editor(s):
June 18, 2008
Received by editor(s) in revised form:
May 16, 2009
Published electronically:
March 9, 2011
Additional Notes:
The second author’s research was supported in part by RFBR (grant no. 080100723a)
Article copyright:
© Copyright 2011
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.
