Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the Cartan matrix of Mackey algebras


Author: Serge Bouc
Journal: Trans. Amer. Math. Soc. 363 (2011), 4383-4399
MSC (2010): Primary 18G05, 20C20, 20J06
DOI: https://doi.org/10.1090/S0002-9947-2011-05291-8
Published electronically: March 22, 2011
MathSciNet review: 2792992
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ k$ be a field of characteristic $ p>0$, and let $ G$ be a finite group. The first result of this paper is an explicit formula for the determinant of the Cartan matrix of the Mackey algebra $ \mu_k(G)$ of $ G$ over $ k$. The second one is a formula for the rank of the Cartan matrix of the cohomological Mackey algebra $ co\mu_k(G)$ of $ G$ over $ k$, and a characterization of the groups $ G$ for which this matrix is nonsingular. The third result is a generalization of this rank formula and characterization to blocks of $ co\mu_k(G)$: in particular, if $ b$ is a block of $ kG$, the Cartan matrix of the corresponding block $ co\mu_k(b)$ of $ co\mu_k(G)$ is nonsingular if and only if $ b$ is nilpotent with cyclic defect groups.


References [Enhancements On Off] (What's this?)

  • 1. D. Benson.
    Modular representation theory: New trends and methods, volume 1081 of Lecture Notes in Mathematics.
    Springer, 1984. MR 765858 (86g:20013)
  • 2. D. Benson.
    Representations and cohomology I, volume 30 of Cambridge studies in advanced mathematics.
    Cambridge University Press, 1991. MR 1110581 (92m:20005)
  • 3. S. Bouc.
    Résolutions de foncteurs de Mackey.
    In Group representations: Cohomology, Group Actions and Topology, volume 63, pages 31-83. AMS Proceedings of Symposia in Pure Mathematics, 1998. MR 1603131 (99b:20015)
  • 4. S. Bouc.
    The $ p$-blocks of the Mackey algebra.
    Algebras and Representation Theory, 6:515-543, 2003. MR 2026725 (2004k:20024)
  • 5. S. Bouc and J. Thévenaz.
    The primitive idempotents of the $ p$-permutation ring.
    Journal of Algebra, 323(10):2905-2915, 2010. MR 2609181
  • 6. R. Brauer and C. Nesbitt.
    On the modular characters of groups.
    Ann. of Math. (2), 42(2):556-590, 1941. MR 0004042 (2:309c)
  • 7. M. Broué.
    On Scott modules and $ p$-permutation modules: an approach through the Brauer morphism.
    Proc. Amer. Math. Soc., 93(3):401-408, March 1985. MR 773988 (86d:20010)
  • 8. M. Broué.
    Rickard equivalences and block theory, volume 211 of London. Math. Soc. Lecture Note, pages 58-79.
    Cambridge Univ. Press, 1995. MR 1342782 (96d:20011)
  • 9. M. Broué and L. Puig.
    A Frobenius theorem for blocks.
    Invent. Math., 56:117-128, 1980. MR 558864 (81d:20011)
  • 10. W. Feit.
    The representation theory of finite groups.
    North-Holland Publishing Company, 1982. MR 661045 (83g:20001)
  • 11. D. Gorenstein.
    Finite groups.
    Harper & Row, 1968. MR 0231903 (38:229)
  • 12. M. Nicollerat.
    Foncteurs de Mackey projectifs.
    Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne, 2008.
  • 13. J. Thévenaz and P. Webb.
    The structure of Mackey functors.
    Trans. Amer. Math. Soc., 347(6):1865-1961, June 1995. MR 1261590 (95i:20018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 18G05, 20C20, 20J06

Retrieve articles in all journals with MSC (2010): 18G05, 20C20, 20J06


Additional Information

Serge Bouc
Affiliation: LAMFA - CNRS UMR 6140, Université de Picardie Jules Verne, 33, rue St Leu, 80039 Amiens, France
Email: serge.bouc@u-picardie.fr

DOI: https://doi.org/10.1090/S0002-9947-2011-05291-8
Keywords: Cartan matrix, cohomological, Mackey functor, block
Received by editor(s): October 6, 2009
Received by editor(s) in revised form: January 2, 2010
Published electronically: March 22, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society