Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the Weil-étale cohomology of number fields


Author: Baptiste Morin
Journal: Trans. Amer. Math. Soc. 363 (2011), 4877-4927
MSC (2000): Primary 14F20; Secondary 14G10
DOI: https://doi.org/10.1090/S0002-9947-2011-05124-X
Published electronically: April 14, 2011
MathSciNet review: 2806695
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a direct description of the category of sheaves on Lichtenbaum's Weil-étale site of a number ring. Then we apply this result to define a spectral sequence relating Weil-étale cohomology to Artin-Verdier étale cohomology. Finally we construct complexes of étale sheaves computing the expected Weil-étale cohomology.


References [Enhancements On Off] (What's this?)

  • 1. M. Artin, Grothendieck Topologies. Notes on a Seminar, Harvard University, 1962.
  • 2. M. Bienenfeld, An étale cohomology duality theorem for number fields with a real embedding. Trans. Amer. Math. Soc. 303 (1987), no. 1, 71-96. MR 896008 (88j:12004)
  • 3. C. Deninger, An extension of Artin-Verdier duality to nontorsion sheaves. J. Reine Angew. Math. 366 (1986), 18-31. MR 833011 (87m:11055)
  • 4. M. Flach, Cohomology of topological groups with applications to the Weil group. Compositio Math. 144 (2008), no. 3, 633-656. MR 2422342 (2009f:14033)
  • 5. A. Grothendieck, M. Artin and J.L. Verdier, Théorie des Topos et cohomologie étale des schémas (SGA4). Lectures Notes in Math. 269, 270, 305, Springer, 1972. MR 0354653 (50:7131)
  • 6. S. Lichtenbaum, The Weil-étale topology for Number Rings. To appear in Ann. of Math. MR 2552104 (2011a:14035)
  • 7. J.S. Milne, Arithmetic Duality Theorems. Perspectives in Mathematics 1, Academic Press, Inc., Boston, Mass., 1996. MR 881804 (88e:14028)
  • 8. B. Morin, Sur le topos Weil-étale d'un corps de nombres. Thesis, 2008.
  • 9. T. Zink, Etale cohomology and duality in number fields. Haberland, Galois cohomology, Berlin, 1978, Appendix 2.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14F20, 14G10

Retrieve articles in all journals with MSC (2000): 14F20, 14G10


Additional Information

Baptiste Morin
Affiliation: Department of Mathematics, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California 91125

DOI: https://doi.org/10.1090/S0002-9947-2011-05124-X
Keywords: Étale cohomology, Weil-étale cohomology, topos, Dedekind zeta function.
Received by editor(s): February 25, 2009
Received by editor(s) in revised form: January 6, 2010
Published electronically: April 14, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society