Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

If you can hide behind it, can you hide inside it?


Author: Daniel A. Klain
Journal: Trans. Amer. Math. Soc. 363 (2011), 4585-4601
MSC (2000): Primary 52A20
DOI: https://doi.org/10.1090/S0002-9947-2011-05178-0
Published electronically: April 11, 2011
MathSciNet review: 2806685
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ K$ and $ L$ be compact convex sets in $ \mathbb{R}^n$. Suppose that, for a given dimension $ 1 \leq d \leq n-1$, every $ d$-dimensional orthogonal projection of $ L$ contains a translate of the corresponding projection of $ K$. Does it follow that the original set $ L$ contains a translate of $ K$? In other words, if $ K$ can be translated to ``hide behind'' $ L$ from any perspective, does it follow that $ K$ can ``hide inside'' $ L$?

A compact convex set $ L$ is defined to be $ d$-decomposable if $ L$ is a direct Minkowski sum (affine Cartesian product) of two or more convex bodies each of dimension at most $ d$. A compact convex set $ L$ is called $ d$-reliable if, whenever each $ d$-dimensional orthogonal projection of $ L$ contains a translate of the corresponding $ d$-dimensional projection of $ K$, it must follow that $ L$ contains a translate of $ K$.

It is shown that, for $ 1 \leq d \leq n-1$:

(1)
$ d$-decomposability implies $ d$-reliability.

(2)
A compact convex set $ L$ in $ \mathbb{R}^n$ is $ d$-reliable if and only if, for all $ m \geq d+2$, no $ m$ unit normals to regular boundary points of $ L$ form the outer unit normals of an $ (m-1)$-dimensional simplex.

(3)
Smooth convex bodies are not $ d$-reliable.

(4)
A compact convex set $ L$ in $ \mathbb{R}^n$ is $ 1$-reliable if and only if $ L$ is $ 1$-decompos- able (i.e. a parallelotope).

(5)
A centrally symmetric compact convex set $ L$ in $ \mathbb{R}^n$ is $ 2$-reliable if and only if $ L$ is $ 2$-decomposable.

However, there are non-centered $ 2$-reliable convex bodies that are not $ 2$-decomposable.

As a result of (5) above, the only reliable centrally symmetric covers in $ \mathbb{R}^3$ from the perspective of 2-dimensional shadows are the affine convex cylinders (prisms). However, in dimensions greater than 3, it is shown that 3-decomposability is only sufficient, and not necessary, for $ L$ to cover reliably with respect to $ 3$-shadows, even when $ L$ is assumed to be centrally symmetric.


References [Enhancements On Off] (What's this?)

  • 1. K. Ball, Some remarks on the geometry of convex sets, Geometric Aspects of Functional Analysis (J. Lindenstrauss and V.D. Milman, eds.), Springer Lecture Notes in Mathematics, vol. 1317, Springer Verlag, Berlin, 1988. MR 950983 (89h:52009)
  • 2. T. Bonnesen and W. Fenchel, Theorie der konvexen Körper, Chelsea, New York, USA, 1948.
  • 3. -, Theory of Convex Bodies, BCS Associates, Moscow, Idaho, 1987. MR 920366 (88j:52001)
  • 4. J. Bourgain, On the Busemann-Petty problem for perturbations of the ball, Geom. Funct. Anal. 1 (1991), 1-13. MR 1091609 (92c:52008)
  • 5. H. Busemann and C. M. Petty, Problems on convex bodies, Math. Scand. 4 (1956), 88-94. MR 0084791 (18:922b)
  • 6. R. J. Gardner, Intersection bodies and the Busemann-Petty problem, Trans. Amer. Math. Soc. 342 (1994), 435-445. MR 1201126 (94e:52008)
  • 7. -, A positive answer to the Busemann-Petty problem in three dimensions, Ann. Math. (2) 140 (1994), 435-447. MR 1298719 (95i:52005)
  • 8. -, Geometric Tomography (2nd Ed.), Cambridge University Press, New York, 2006. MR 2251886 (2007i:52010)
  • 9. R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytic solution to the Busemann-Petty problem on sections of convex bodies, Ann. Math. (2) 149 (1999), 691-703. MR 1689343 (2001b:52011)
  • 10. R. J. Gardner and A. Volčič, Convex bodies with similar projections, Proc. Amer. Math. Soc. 121 (1994), 563-568. MR 1185262 (94h:52005)
  • 11. A. Giannopoulos, A note on a problem of H. Busemann and C. M. Petty concerning sections of symmetric convex bodies, Mathematika 37 (1990), 239-244. MR 1099772 (92c:52009)
  • 12. H. Groemer, Ein Satz über konvexe Körper und deren Projektionen, Portugal. Math. 21 (1962), 41-43. MR 0142055 (25:5449)
  • 13. H. Hadwiger, Gegenseitige Bedeckbarkeit zweier Eibereiche und Isoperimetrie, Vierteljschr. Naturforsch. Gesellsch. Zürich 86 (1941), 152-156. MR 0007274 (4:112c)
  • 14. -, Überdeckung ebener Bereiche durch Kreise und Quadrate, Comment. Math. Helv. 13 (1941), 195-200. MR 0004995 (3:90f)
  • 15. -, Seitenrisse konvexer Körper und Homothetie, Elem. Math. 18 (1963), 97-98. MR 0155232 (27:5168)
  • 16. D. Klain, Covering shadows with a smaller volume, Adv. Math. 224 (2010), 601-619. MR 2609017 (2011d:52012)
  • 17. -, Containment and inscribed simplices, Indiana Univ. Math. J. 59 (2010), 1231-1244.
  • 18. D. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge University Press, New York, 1997. MR 1608265 (2001f:52009)
  • 19. A. Koldobsky, Intersection bodies, positive definite distributions, and the Busemann-Petty problem, Amer. J. Math. 120 (1998), 827-840. MR 1637955 (99i:52005)
  • 20. D. G. Larman and C. A. Rogers, The existence of a centrally symmetric convex body with central sections that are unexpectedly small, Mathematika 22 (1975), 164-175. MR 0390914 (52:11737)
  • 21. E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232-261. MR 963487 (90a:52023)
  • 22. -, Containment and circumscribing simplices, Discrete Comput. Geom. 19 (1998), 229-235. MR 1600051 (99a:52009)
  • 23. A. Papadimitrakis, On the Busemann-Petty problem about convex centrally symmetric bodies in $ \mathbb{R}^n$, Mathematika 39 (1992), 258-266. MR 1203282 (94a:52019)
  • 24. C. M. Petty, Projection bodies, Proceedings, Coll. Convexity, Copenhagen, 1965, vol. Københavns Univ. Mat. Inst., 1967, pp. 234-241. MR 0216369 (35:7203)
  • 25. C. A. Rogers, Sections and projections of convex bodies, Portugal. Math. 24 (1965), 99-103. MR 0198344 (33:6502)
  • 26. L. A. Santaló, Integral Geometry and Geometric Probability, Addison-Wesley, Reading, MA, 1976. MR 0433364 (55:6340)
  • 27. R. Schneider, Zur einem Problem von Shephard über die Projektionen konvexer Körper., Math Z. 101 (1967), 71-82. MR 0218976 (36:2059)
  • 28. -, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, New York, 1993. MR 1216521 (94d:52007)
  • 29. G. C. Shephard, Shadow systems of convex bodies, Israel J. Math. 2 (1964), 229-236. MR 0179686 (31:3931)
  • 30. V. Soltan, Convex sets with homothetic projections, Beiträge Algebra Geom. 51 (2010), 237-249. MR 2650489 (2011c:52010)
  • 31. R. Webster, Convexity, Oxford University Press, New York, 1994. MR 1443208 (98h:52001)
  • 32. G. Zhang, Intersection bodies and the Busemann-Petty inequalities in $ \mathbb{R}^4$, Ann. Math. (2) 140 (1994), no. 2, 331-346. MR 1298716 (95i:52004)
  • 33. -, A positive solution to the Busemann-Petty problem in $ \mathbb{R}^4$, Ann. Math. (2) 149 (1999), 535-543. MR 1689339 (2001b:52010)
  • 34. J. Zhou, The sufficient condition for a convex body to contain another in $ \mathbb{R}^4$, Proc. Amer. Math. Soc. 121 (1994), 907-913. MR 1184090 (94i:52007)
  • 35. -, Sufficient conditions for one domain to contain another in a space of constant curvature, Proc. Amer. Math. Soc. 126 (1998), 2797-2803. MR 1451838 (98k:52016)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 52A20

Retrieve articles in all journals with MSC (2000): 52A20


Additional Information

Daniel A. Klain
Affiliation: Department of Mathematical Sciences, University of Massachusetts Lowell, Lowell, Massachusetts 01854
Email: Daniel_Klain@uml.edu

DOI: https://doi.org/10.1090/S0002-9947-2011-05178-0
Received by editor(s): June 4, 2009
Published electronically: April 11, 2011
Article copyright: © Copyright 2011 Daniel A. Klain

American Mathematical Society