Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Local rigidity of inversive distance circle packing


Author: Ren Guo
Journal: Trans. Amer. Math. Soc. 363 (2011), 4757-4776
MSC (2000): Primary 52C26, 58E30
DOI: https://doi.org/10.1090/S0002-9947-2011-05239-6
Published electronically: April 11, 2011
MathSciNet review: 2806690
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A Euclidean (or hyperbolic) circle packing on a triangulated closed surface with prescribed inversive distance is locally determined by its cone angles. We prove this by establishing a variational principle.


References [Enhancements On Off] (What's this?)

  • 1. E. M. Andreev, Convex polyhedra in Lobachevsky spaces. (Russian) Mat. Sb. (N.S.) 81 (123) 1970 445-478. MR 0259734 (41:4367)
  • 2. E. M. Andreev, Convex polyhedra of finite volume in Lobachevsky space. (Russian) Mat. Sb. (N.S.) 83 (125) 1970 256-260. MR 0273510 (42:8388)
  • 3. W. Brägger, Kreispackungen und Triangulierungen. Enseign. Math., 38:201-217, 1992. MR 1189006 (94b:52032)
  • 4. P. L. Bowers, M. K. Hurdal, Planar conformal mappings of piecewise flat surfaces. Visualization and Mathematics III, 3-34, Math. Vis., Springer, Berlin, 2003. MR 2046999
  • 5. P. L. Bowers, K. Stephenson, Uniformizing dessins and Belyĭ maps via circle packing. Mem. Amer. Math. Soc. 170 (2004), no. 805. MR 2053391 (2005a:30068)
  • 6. A. I. Bobenko, B. A. Springborn, Variational principles for circle patterns and Koebe's theorem. Trans. Amer. Math. Soc. 356 (2004), no. 2, 659-689. MR 2022715 (2005b:52054)
  • 7. H. S. M. Coxeter, Inversive distance. Ann. Mat. Pura Appl. (4) 71 1966 73-83. MR 0203568 (34:3418)
  • 8. Y. Colin de Verdiére, Un principe variationnel pour les empilements de cercles. Invent. Math., 104:655-669, 1991. MR 1106755 (92h:57020)
  • 9. B. Chow, F. Luo, Combinatorial Ricci flows on surfaces. J. Differential Geom. 63 (2003), no. 1, 97-129. MR 2015261 (2005a:53106)
  • 10. J. Dai, X. D. Gu, F. Luo, Variational principles for discrete surfaces. Advanced Lectures in Mathematics (ALM), 4. International Press, Somerville, MA; Higher Education Press, Beijing, 2008. MR 2439807
  • 11. D. Glickenstein, Discrete conformal variations and scalar curvature on piecewise flat two and three dimensional manifolds. arXiv:0906.1560, to appear in J. Differential Geom.
  • 12. R. Guo, A note on circle patterns on surfaces. Geom. Dedicata 125 (2007), 175-190. MR 2322547 (2008f:52027)
  • 13. R. Guo, F. Luo, Rigidity of polyhedral surfaces, II. Geom. Topol. 13 (2009), 1265-1312. MR 2496046
  • 14. Z.-X. He, Rigidity of infinite disk patterns. Ann. of Math. (2) 149 (1999), no. 1, 1-33. MR 1680531 (2000j:30068)
  • 15. M. K. Hurdal, K. Stephenson, Discrete conformal methods for cortical brain flattening. Neuroimage, vol. 45, S86-S98, 2009.
  • 16. P. Koebe, Kontaktprobleme der konformen Abbildung. Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 88 (1936), 141-164.
  • 17. G. Leibon, Characterizing the Delaunay decompositions of compact hyperbolic surface. Geom. Topol. 6 (2002), 361-391. MR 1914573 (2003c:52034)
  • 18. F. Luo, Rigidity of polyhedral surfaces. arXiv:math.GT/0612714, to appear in J. Differential Geom.
  • 19. A. Marden, B. Rodin, On Thurston's formulaton and proof of Andreeev's theorem. Computational methods and function theory (Valparaíso, 1989), 103-116, Lecture Notes in Math., 1435, Springer, Berlin, 1990. MR 1071766 (92b:52040)
  • 20. I. Rivin, Euclidean structures of simplicial surfaces and hyperbolic volume. Ann. of Math., 139:553-580, 1994. MR 1283870 (96h:57010)
  • 21. B. Springborn, A variational principle for weighted Delaunay triangulations and hyperideal polyhedra. J. Differential Geom. 78 (2008), no. 2, 333-367. MR 2394026 (2009a:52010)
  • 22. K. Stephenson, Introduction to circle packing. The theory of discrete analytic functions. Cambridge University Press, Cambridge, 2005. MR 2131318 (2006a:52022)
  • 23. W. P. Thurston, Geometry and topology of $ 3$-manifolds. lecture notes, Math. Dept. of Princeton University, 1979.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 52C26, 58E30

Retrieve articles in all journals with MSC (2000): 52C26, 58E30


Additional Information

Ren Guo
Affiliation: School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Email: guoxx170@math.umn.edu

DOI: https://doi.org/10.1090/S0002-9947-2011-05239-6
Keywords: Circle packing, rigidity, variational principle.
Received by editor(s): April 2, 2009
Received by editor(s) in revised form: September 17, 2009
Published electronically: April 11, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society