Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 
 

 

Global heat kernel estimates for symmetric jump processes


Authors: Zhen-Qing Chen, Panki Kim and Takashi Kumagai
Journal: Trans. Amer. Math. Soc. 363 (2011), 5021-5055
MSC (2010): Primary 60J75, 60J35; Secondary 31C25, 31B05
DOI: https://doi.org/10.1090/S0002-9947-2011-05408-5
Published electronically: March 10, 2011
Corrigendum: Trans. Amer. Math. Soc. 367 (2015), 7515.
MathSciNet review: 2806700
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we study sharp heat kernel estimates for a large class of symmetric jump-type processes in $ \mathbb{R}^d$ for all $ t>0$. A prototype of the processes under consideration are symmetric jump processes on $ \mathbb{R}^d$ with jumping intensity

$\displaystyle \frac{1}{\Phi(\vert x-y\vert)} \int_{[\alpha_1, \alpha_2]} \frac{c(\alpha, x,y)} {\vert x-y\vert^{d+\alpha}} \nu(d\alpha) , $

where $ \nu$ is a probability measure on $ [\alpha_1, \alpha_2] \subset (0, 2)$, $ \Phi$ is an increasing function on $ [ 0, \infty )$ with $ c_1e^{c_2r^{\beta}} \le \Phi(r) \le c_3 e^{c_4r^{\beta}}$ with $ \beta \in (0,\infty)$, and $ c(\alpha , x, y)$ is a jointly measurable function that is bounded between two positive constants and is symmetric in $ (x, y)$. They include, in particular, mixed relativistic symmetric stable processes on $ \mathbb{R}^d$ with different masses. We also establish the parabolic Harnack principle.


References [Enhancements On Off] (What's this?)

  • 1. M.T. Barlow, R.F. Bass, Z.-Q. Chen and M. Kassmann. Non-local Dirichlet forms and symmetric jump processes. Trans. Amer. Math. Soc. 361 (2009), 1963-1999. MR 2465826 (2010e:60163)
  • 2. M.T. Barlow, R.F. Bass and T. Kumagai. Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps. Math. Z. 261 (2009), 297-320. MR 2457301 (2009m:60111)
  • 3. M.T. Barlow, A. Grigor'yan and T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. J. Reine Angew. Math. 626 (2009), 135-157. MR 2492992 (2009m:58077)
  • 4. R. F. Bass and D. A. Levin. Transition probabilities for symmetric jump processes. Trans. Amer. Math. Soc. 354 (2002), 2933-2953. MR 1895210 (2002m:60132)
  • 5. L. A. Caffarelli, S. Salsa and Luis Silvestre. Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian. Invent. Math. 171(1) (2008), 425-461. MR 2367025 (2009g:35347)
  • 6. E.A. Carlen, S. Kusuoka and D.W. Stroock. Upper bounds for symmetric Markov transition functions. Ann. Inst. H. Poincaré-Probab. Statist. 23 (1987), 245-287. MR 898496 (88i:35066)
  • 7. R. Carmona, W. C. Masters and B. Simon. Relativistic Schrödinger operators: Asymptotic behavior of the eigenfunctions. J. Funct. Anal. 91(1) (1990), 117-142. MR 1054115 (91i:35139)
  • 8. P. Carr, H. Geman, D. Madan and M. Yor. The Fine Structure of Asset Returns: An Empirical Investigation, Journal of Business, 75(2) (2002), 305-332.
  • 9. Z.-Q. Chen. Gaugeability and conditional gaugeability. Trans. Amer. Math. Soc. 354 (2002), 4639-4679. MR 1926893 (2003i:60127)
  • 10. Z.-Q. Chen, P. Kim and T. Kumagai. Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann. 342(4) (2008), 833-883 MR 2443765 (2010b:60230)
  • 11. Z.-Q. Chen, P. Kim and T. Kumagai. On heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces. Acta Math. Sin. (Engl. Ser.) 25 (2009), 1067-1086. MR 2524930
  • 12. Z.-Q. Chen and T. Kumagai. Heat kernel estimates for stable-like processes on $ d$-sets. Stochastic Process Appl. 108 (2003), 27-62. MR 2008600 (2005d:60135)
  • 13. Z.-Q. Chen and T. Kumagai. Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Relat. Fields 140 (2008), 277-317. MR 2357678 (2009e:60186)
  • 14. Z.-Q. Chen and R. Song. Drift transforms and Green function estimates for discontinuous processes. J. Funct. Anal. 201 (2003), 262-281. MR 1986161 (2004c:60218)
  • 15. Z.-Q. Chen and K. Tsuchida. Large deviation, compact embedding and differentiability of spectral functions. In preparation.
  • 16. M. Fukushima, Y. Oshima and M. Takeda. Dirichlet Forms and Symmetric Markov Processes. de Gruyter, Berlin, 1994. MR 1303354 (96f:60126)
  • 17. I. Koponen, Analytic approach to the problem of convergence of truncated Levy flights towards the Gaussian stochastic process, Physical Review E, 52 (1995), 1197-1199.
  • 18. E. H. Lieb and H.-T. Yau. The stability and instability of relativistic matter. Comm. Math. Phys. 118(2) (1988), 177-213. MR 956165 (90c:81251)
  • 19. R. N. Mantegna and H. E. Stanley. Stochastic processes with ultraslow convergence to a Gassuan: The truncated Lévy flight. Phys. Rev. Letter 73 (1994), 2946-2949. MR 1303317 (95g:82062)
  • 20. J. Masamune and T. Uemura. Conservation property of symmetric jump processes. To appear in Ann. Inst. Henri Poincaré Probab. Stat.
  • 21. A. Matacz. Financial modeling and option theory with the truncated Lévy process. Int. J. Theor. Appl. Finance 3(1) (2000), 143-160.
  • 22. P.-A. Meyer.
    Renaissance, recollements, mélanges, ralentissement de processus de Markov.
    Ann. Inst. Fourier 25 (1975), 464-497. MR 0415784 (54:3862)
  • 23. J. Rosiński. Tempering stable processes. Stochastic Process. Appl. 117(6) (2007), 677-707. MR 2327834 (2008g:60146)
  • 24. M. Takeda and K. Tsuchida. Differentiability of spectral functions for symmetric $ \alpha$-stable processes. Trans. Amer. Math. Soc. 359 (2007), 4031-4054. MR 2302522 (2008a:35045)
  • 25. K. Tsuchida. Differentiability of spectral functions for relativistic $ \alpha$-stable processes with application to large deviations. Potential Anal. 28 (2008), 17-33. MR 2366397 (2008j:60191)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 60J75, 60J35, 31C25, 31B05

Retrieve articles in all journals with MSC (2010): 60J75, 60J35, 31C25, 31B05


Additional Information

Zhen-Qing Chen
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
Email: zchen@math.washington.edu

Panki Kim
Affiliation: Department of Mathematical Science, Seoul National University, Seoul 151-747, South Korea
Email: pkim@snu.ac.kr

Takashi Kumagai
Affiliation: Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
Email: kumagai@kurims.kyoto-u.ac.jp

DOI: https://doi.org/10.1090/S0002-9947-2011-05408-5
Keywords: Dirichlet form, jump process, jumping kernel, parabolic Harnack inequality, heat kernel estimates
Received by editor(s): March 23, 2010
Published electronically: March 10, 2011
Additional Notes: The first author’s research was partially supported by NSF Grant DMS-0906743.
The second author’s research was supported by a National Research Foundation of Korea Grant funded by the Korean Government (2009-0087117)
The second and the third authors’ research was partially supported by the Global COE program at the Department of Mathematics, Faculty of Science, Kyoto University.
Article copyright: © Copyright 2011 Zhen-Qing Chen, Panki Kim, and Takashi Kumagai

American Mathematical Society