Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Covariant derivatives of the Berezin transform


Authors: Miroslav Engliš and Renata Otáhalová
Journal: Trans. Amer. Math. Soc. 363 (2011), 5111-5129
MSC (2000): Primary 47B32; Secondary 32A36, 53B35, 32Q15
DOI: https://doi.org/10.1090/S0002-9947-2011-05111-1
Published electronically: May 4, 2011
MathSciNet review: 2813410
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Improving upon recent results of Coburn, Xia, Li, Engliš and Zhang, Bommier-Hato, and others, we give estimates for higher-order covariant derivatives of the Berezin transform of bounded linear operators on a reproducing kernel Hilbert space of holomorphic functions. The answer turns out to involve the curvature of the Bergman-type metric associated to the reproducing kernel.


References [Enhancements On Off] (What's this?)

  • 1. J. Arazy, M. Engliš: $ Q_p$-spaces on bounded symmetric domains, J. Funct. Spaces Appl. 6 (2008), 1419-1457. MR 2444523
  • 2. H. Bateman, A. Erdélyi, Higher transcendental functions, vol. III, McGraw-Hill, New York-Toronto-London, 1953. MR 0066496 (16:586c)
  • 3. M. Beals, C. Fefferman, and R. Grossman: Strictly pseudoconvex domains in $ \mathbf{C}^n$, Bull. Amer. Math. Soc. 8(1983), 125-326. MR 684898 (85a:32025)
  • 4. F.A. Berezin: Quantization, Math. USSR Izvestiya 8 (1974), 1109-1163. MR 0395610 (52:16404)
  • 5. S. Bergman, The kernel function and conformal mapping. Second, revised edition, Mathematical Surveys, vol. 5, American Mathematical Society, Providence, 1970. MR 0507701 (58:22502)
  • 6. H. Boas, E. Straube, J. Yu: Boundary limits of the Bergman kernel and metric, Michigan Math. J. 42 (1995), 449-461. MR 1357618 (96j:32029)
  • 7. S. Bochner, K. Yano, Curvature and Betti numbers, Princeton University Press, Princeton, 1953. MR 0062505 (15:989f)
  • 8. H. Bommier-Hato: Lipschitz estimates for the Berezin transform, J. Funct. Spaces Appl. 8 (2010), 103-128. MR 2667872
  • 9. H. Bommier-Hato: Derivatives of the Berezin transform, preprint (2008).
  • 10. H. Bommier-Hato, E.H. Youssfi: Hankel operators on weighted Fock spaces, Integ. Eqs. Oper. Theory 59 (2007), 1-17. MR 2351271 (2008k:47064)
  • 11. L.A. Coburn: A Lipschitz estimate for Berezin's operator calculus, Proc. Amer. Math. Soc. 133 (2005), 127-131. MR 2085161 (2005e:47060)
  • 12. L.A. Coburn: Sharp Berezin-Lipschitz estimates, Proc. Amer. Math. Soc. 135 (2007), 1163-1168. MR 2262921 (2007g:47033)
  • 13. L.A. Coburn, B. Li: Directional derivative estimates for Berezin's operator calculus, Proc. Amer. Math. Soc. 136 (2008), 641-649. MR 2358506 (2008h:47048)
  • 14. M. Engliš: A characterization of symmetric domains, J. Math. Kyoto Univ. 46 (2006), 123-146. MR 2260820 (2008c:32031)
  • 15. M. Engliš, G. Zhang: On the derivatives of the Berezin transform, Proc. Amer. Math. Soc. 134 (2006), 2285-2294. MR 2213701 (2007c:47029)
  • 16. P.B. Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer index theorem, Publish or Perish, 1984. MR 783634 (86j:58144)
  • 17. I.C. Gohberg, M.G. Krein, Introduction to the theory of linear nonselfadjoint operators, Translations of Mathematical Monographs, vol. 18, Amer. Math. Soc., Providence, 1969. MR 0246142 (39:7447)
  • 18. K.T. Hahn: On completeness of the Bergman metric and its subordinate metric, Proc. Nat. Acad. Sci. USA 73 (1976), 4294. MR 0417459 (54:5509)
  • 19. S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York-London, 1962. MR 0145455 (26:2986)
  • 20. M. Jarnicki, P. Pflug, Invariant distances and metrics in complex analysis, Walter de Gruyter, 1993. MR 1242120 (94k:32039)
  • 21. P.F. Klembeck: Kähler metrics of negative curvature, the Bergman metric near the boundary, and the Kobayashi metric on smooth bounded strictly pseudoconvex sets, Indiana Univ. Math. J. 27 (1978), 275-282. MR 0463506 (57:3455)
  • 22. S. Kobayashi, K. Nomizu, Foundations of differential geometry, vol. II, Interscience, New York -London-Sydney, 1969. MR 0238225 (38:6501)
  • 23. S.G. Krantz, J. Yu: On the Bergman invariant and curvatures of the Bergman metric, Illinois J. Math. 40 (1996), 226-244. MR 1398092 (97g:32026)
  • 24. T. Mazur, P. Pflug, M. Skwarczynski: Invariant distances related to the Bergman kernel function, Proc. Amer. Math. Soc. 94 (1985), 72-76. MR 781059 (86i:32047)
  • 25. K. Nam, D. Zheng, C. Zhong: $ m$-Berezin transform and compact operators, Rev. Mat. Iberoam. 22 (2006), 867-892. MR 2320405 (2008d:47059)
  • 26. J. Peetre: The Berezin transform and Ha-plitz operators, J. Operator Theory 24 (1990), 165-186. MR 1086552 (91k:47058)
  • 27. T. Sakai, Riemannian geometry, Transl. Math. Monographs, vol. 149, Amer. Math. Soc., Providence, 1996. MR 1390760 (97f:53001)
  • 28. D. Suárez: Approximation and symbolic calculus for Toeplitz algebras on the Bergman space, Rev. Mat. Iberoam. 20 (2004), 563-610. MR 2073132 (2005e:47075)
  • 29. R.M. Timoney: Bloch functions in several complex variables I, Bull. London Math. Soc. 12 (1980), 241-267; II, J. Reine Angew. Math. 319 (1980), 1-22. MR 576974 (83b:32004); MR 0586111 (83b:32005)
  • 30. F. Zheng, Complex differential geometry, Amer. Math. Soc., Providence, 2000. MR 1777835 (2001i:32035)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 47B32, 32A36, 53B35, 32Q15

Retrieve articles in all journals with MSC (2000): 47B32, 32A36, 53B35, 32Q15


Additional Information

Miroslav Engliš
Affiliation: Mathematics Institute, Silesian University in Opava, Na Rybníčku 1, 74601 Opava, Czech Republic – and – Mathematics Institute, Academy of Sciences, Žitná 25, 11567 Prague 1, Czech Republic
Email: englis{@}math.cas.cz

Renata Otáhalová
Affiliation: Mathematics Institute, Silesian University in Opava, Na Rybníčku 1, 74601 Opava, Czech Republic
Email: Renata.Otahalova@math.slu.cz

DOI: https://doi.org/10.1090/S0002-9947-2011-05111-1
Keywords: Berezin transform, Berezin symbol, covariant derivative, curvature, reproducing kernel
Received by editor(s): May 16, 2008
Received by editor(s) in revised form: May 17, 2009
Published electronically: May 4, 2011
Additional Notes: This research was supported by GA AV ČR grant no. IAA100190802 and Ministry of Education research plan no. MSM4781305904
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society