Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

$ q$-Chaos


Authors: Marius Junge and Hun Hee Lee
Journal: Trans. Amer. Math. Soc. 363 (2011), 5223-5249
MSC (2010): Primary 47L25; Secondary 46B07
DOI: https://doi.org/10.1090/S0002-9947-2011-05165-2
Published electronically: May 18, 2011
MathSciNet review: 2813414
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the $ L_p$ norm estimates for homogeneous polynomials of $ q$-Gaussian variables ( $ -1\leq q\leq 1$). When $ -1<q<1$ the $ L_p$ estimates for $ 1\leq p \leq 2$ are essentially the same as the free case ($ q=0$), whilst the $ L_p$ estimates for $ 2\leq p \leq \infty$ show a strong $ q$-dependence. Moreover, the extremal cases $ q = \pm 1$ produce decisively different formulae.


References [Enhancements On Off] (What's this?)

  • 1. A. Buchholz, Operator Khintchine inequality in non-commutative probability. Math. Ann. 319 (2001), no. 1, 1-16. MR 1812816 (2001m:46142)
  • 2. M. Bożejko, Completely positive maps on Coxeter groups and the ultracontractivity of the $ q$-Ornstein-Uhlenbeck semigroup. Quantum probability (Gdańsk, 1997), 87-93, Banach Center Publ., 43, Polish Acad. Sci., Warsaw, 1998. MR 1649711 (2000k:20053)
  • 3. M. Bożejko and R. Speicher, An example of a generalized Brownian motion. Comm. Math. Phys. 137 (1991), no. 3, 519-531. MR 1105428 (92m:46096)
  • 4. M. Bożejko and R. Speicher, Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces. Math. Ann. 300 (1994), no. 1, 97-120. MR 1289833 (95g:46105)
  • 5. E. G. Effros and Z. J. Ruan, Operator spaces. London Mathematical Society Monographs. New Series, 23. The Clarendon Press, Oxford University Press, New York, 2000. MR 1793753 (2002a:46082)
  • 6. F. Hiai, $ q$-deformed Araki-Woods algebras. Operator algebras and mathematical physics (Constanţa, 2001), 169-202, Theta, Bucharest, 2003. MR 2018229 (2004j:46086)
  • 7. U. Haagerup and M. Musat, On the best constants in noncommutative Khintchine-type inequalities. J. Funct. Anal. 250 (2007), no. 2, 588-624. MR 2352492 (2008m:46111)
  • 8. U. Haagerup and G. Pisier, Bounded linear operators between $ C\sp *$-algebras. Duke Math. J. 71 (1993), no. 3, 889-925. MR 1240608 (94k:46112)
  • 9. M. Junge, Embedding of the operator space OH and the logarithmic `little Grothendieck inequality'. Invent. Math. 161 (2005), no. 2, 225-286. MR 2180450 (2006i:47130)
  • 10. M. Junge, Operator spaces and Araki-Woods factors: a quantum probabilistic approach. IMRP Int. Math. Res. Pap. 2006, Art. ID 76978, 87 pp. MR 2268491 (2009k:46118)
  • 11. M. Junge, J. Parcet, and Q. Xu, Rosenthal type inequalities for free chaos. Ann. Probab. 35 (2007), no. 4, 1374-1437. MR 2330976
  • 12. M. Junge, Z.-J. Ruan and Q. Xu, Rigid $ \mathcal{OL}\sb p$ structures of non-commutative $ L\sb p$-spaces associated with hyperfinite von Neumann algebras. Math. Scand. 96 (2005), no. 1, 63-95. MR 2142873 (2006b:46086)
  • 13. M. Junge and Q. Xu, Noncommutative Burkholder/Rosenthal inequalities. Ann. Probab. 31 (2003), 948-995. MR 1964955 (2004f:46078)
  • 14. M. Junge and Q. Xu, Noncommutative Burkholder/Rosenthal inequalities II: Applications. Israel. J. Math. 167 (2008), 227-282. MR 2448025
  • 15. H. Kosaki, Applications of the complex interpolation method to a von Neumann algebra: Noncommutative $ L\sp{p}$-spaces. J. Funct. Anal. 56 (1984), no. 1, 29-78. MR 735704 (86a:46085)
  • 16. I. Krolak, Wick product for commutation relations connected with Yang-Baxter operators and new constructions of factors. Comm. Math. Phys. 210 (2000), 685-701. MR 1777345 (2001i:46103)
  • 17. F. Lust-Piquard, Inégalités de Khintchine dans $ C\sb p\;(1<p<\infty)$. (French) [Khinchin inequalities in $ C\sb p\;(1<p<\infty)$] C. R. Acad. Sci. Paris Ser. I Math. 303 (1986), no. 7, 289-292. MR 859804 (87j:47032)
  • 18. F. Lust-Piquard and G. Pisier, Noncommutative Khintchine and Paley inequalities. Ark. Mat. 29 (1991), no. 2, 241-260. MR 1150376 (94b:46011)
  • 19. M. Ledoux and M. Talagrand, Probability in Banach spaces, Springer-Verlag, 1992. MR 1102015 (93c:60001)
  • 20. A. Nou, Non injectivity of the $ q$-deformed von Neumann algebra. Math. Ann. 330 (2004), no. 1, 17-38. MR 2091676 (2005k:46187)
  • 21. J. Parcet and G. Pisier, Non-commutative Khintchine type inequalities associated with free groups. Indiana Univ. Math. J. 54 (2005), no. 2, 531-556. MR 2136820 (2006a:46071)
  • 22. G. Pisier, Holomorphic semigroups and the geometry of Banach spaces. Ann. of Math. (2) 115 (1982), no. 2, 375-392. MR 647811 (83h:46027)
  • 23. G. Pisier, Non-commutative vector valued $ L_p$-spaces and completely $ p$-summing maps. Astérisque (Soc. Math. France) 247 (1998), 1-111.
  • 24. G. Pisier, Introduction to operator space theory. London Mathematical Society Lecture Note Series, 294. Cambridge University Press, Cambridge, 2003. MR 2006539 (2004k:46097)
  • 25. G. Pisier and Q. Xu, Non-commutative $ L_p$-spaces. In Handbook of the geometry of the Banach spaces, Vol. 2, 1459-1517. North-Holland, Amsterdam, 2003. MR 1999201 (2004i:46095)
  • 26. E. Ricard and Q. Xu, Khintchine type inequalities for reduced free products and applications. J. Reine Angew. Math. 599 (2006), 27-59. MR 2279097 (2009h:46110)
  • 27. R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory. Mem. Amer. Math. Soc. 132 (1998), no. 627, x+88 pp. MR 1407898 (98i:46071)
  • 28. D. Shlyakhtenko, Free quasi-free states. Pacific J. Math. 177 (1997) no. 2, 329-368. MR 1444786 (98b:46086)
  • 29. M. Takesaki, Theory of operator algebras. I. Springer-Verlag, New York-Heidelberg, 1979. MR 548728 (81e:46038)
  • 30. M. Takesaki, Theory of operator algebras. II. Encyclopaedia of Mathematical Sciences, 125. Operator Algebras and Non-commutative Geometry, 6. Springer-Verlag, Berlin, 2003. MR 1943006 (2004g:46079)
  • 31. M. Terp, Interpolation spaces between a von Neumann algebra and its predual. J. Operator Theory 8 (1982), no. 2, 327-360. MR 677418 (85b:46075)
  • 32. Q. Xu, Embedding of $ C_q$ and $ R_q$ into noncommuatative $ L_p$-spaces, $ 1\leq p < q \leq 2$. Math. Ann. 335 (2006), no. 1, 109-131. MR 2217686 (2007m:46095)
  • 33. Q. Xu, Operator Grothendieck inequalities for noncommuatative $ L_p$-spaces. Duke Math. J. 131 (2006), no. 3, 525-574. MR 2219250 (2007b:46101)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 47L25, 46B07

Retrieve articles in all journals with MSC (2010): 47L25, 46B07


Additional Information

Marius Junge
Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, 273 Altgeld Hall, 1409 W. Green Street, Urbana, Illinois 61801
Email: junge@math.uiuc.edu

Hun Hee Lee
Affiliation: Department of Mathematics, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763, Korea
Email: hhlee@chungbuk.ac.kr

DOI: https://doi.org/10.1090/S0002-9947-2011-05165-2
Keywords: Operator space, quantum probability, $q$-Gaussian, Araki-woods factor, CAR, CCR
Received by editor(s): January 21, 2008
Received by editor(s) in revised form: June 22, 2009, and July 11, 2009
Published electronically: May 18, 2011
Additional Notes: The first author was partially supported by NSF DMS - 0901457
The second author was partially supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0015222)
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society