Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On the derivative of the Hausdorff dimension of the quadratic Julia sets


Author: Ludwik Jaksztas
Journal: Trans. Amer. Math. Soc. 363 (2011), 5251-5291
MSC (2000): Primary 37F45; Secondary 37F35
DOI: https://doi.org/10.1090/S0002-9947-2011-05208-6
Published electronically: April 21, 2011
MathSciNet review: 2813415
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ d(c)$ denote the Hausdorff dimension of the Julia set $ J_c$ of the polynomial $ f_c(z)=z^2+c$. The function $ c\mapsto d(c)$ is real-analytic on the interval $ (-3/4,1/4)$, which is included in the main cardioid of the Mandelbrot set. It was shown by G. Havard and M. Zinsmeister that the derivative $ d'(c)$ tends to $ +\infty$ as fast as $ (1/4-c)^{d(1/4)-3/2}$ when $ c\nearrow1/4$. Under numerically verified assumption $ d(-3/4)<4/3$, we prove that $ d'(c)$ tends to $ -\infty$ as $ -(c+3/4)^{3d(-3/4)/2-2}$ when $ c\searrow-3/4$.


References [Enhancements On Off] (What's this?)

  • 1. J. Aaronson, M. Denker, M. Urbański, Ergodic theory for Markov fibered systems and parabolic rational maps, Transactions of A.M.S. 337 (1993), 495-548. MR 1107025 (94g:58116)
  • 2. X. Buff, L. Tan, Dynamical convergence and polynomial vector fields, Journal of Differential Geometry 77 (2007), 1-41. MR 2344353 (2008k:37096)
  • 3. M. Denker, M. Urbański, Absolutely continuous invariant measures for expansive rational maps with rationaly indifferent periodic points, Forum Math. 3 (1991), 561-579. MR 1129999 (92k:58154)
  • 4. A. Douady, Does a Julia set depend continuously on the polynomial?, Proceedings of Symposia in Applied Mathematics 49 (1994), 91-135. MR 1315535
  • 5. A. Douady, P. Sentenac, M. Zinsmeister, Implosion parabolique et dimension de Hausdorff, C. R. Acad. Sci. Paris, Ser. I 325 (1997), 765-772. MR 1483715 (98i:58195)
  • 6. G. M. Goluzin, Geometric theory of functions of a complex variable, Translations of Mathematical Monographs, vol. 26, AMS, 1969. MR 0247039 (40:308)
  • 7. G. Havard, M. Zinsmeister, Le chou-fleur a une dimension de Hausdorff inférieure à 1,295, Preprint, 2000.
  • 8. G. Havard, M. Zinsmeister, Thermodynamic formalism and variations of the Hausdorff dimension of quadratic Julia sets, Commun. Math. Phys. 210 (2000), 225-247. MR 1748176 (2002f:37082)
  • 9. J. H. Hubbard, Teichmüller Theory, vol. 1, Matrix Editions, 2006. MR 2245223 (2008k:30055)
  • 10. F. Przytycki, M. Urbański Fractals in the Plane, Ergodic Theory Methods, London Math. Soc. Lecture Note Series, vol. 371, Cambridge University Press, 2010. MR 2656475
  • 11. C. McMullen, Hausdorff dimension and conformal dynamics II: Geometrically finite rational maps, Comm. Math. Helv. 75 (2000), 535-593. MR 1789177 (2001m:37089)
  • 12. C. McMullen, Hausdorff dimension and conformal dynamics III: Computation of dimension, Amer. J. Math. 120 (1998), 471-515. MR 1637951 (2000d:37055)
  • 13. D. Ruelle, Repellers for real analytic maps, Ergodic Theory and Dynam. Syst. 2 (1982), 99-107. MR 684247 (84f:58095)
  • 14. F. Schweiger, Number theretical endomorphisms with $ \sigma$-finite invariant measures, Isr. J. Math. 21 (1975), 308-318. MR 0384735 (52:5608)
  • 15. M. Zinsmeister, Thermodynamic Formalism and Holomorphic Dynamical Systems, SMF/AMS Texts and Monographs, vol. 2, 1996. MR 1462079 (98k:58150)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 37F45, 37F35

Retrieve articles in all journals with MSC (2000): 37F45, 37F35


Additional Information

Ludwik Jaksztas
Affiliation: Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
Email: jaksztas@impan.gov.pl

DOI: https://doi.org/10.1090/S0002-9947-2011-05208-6
Received by editor(s): October 19, 2008
Received by editor(s) in revised form: July 11, 2009
Published electronically: April 21, 2011
Additional Notes: This work was partially supported by Polish MNiSW grants 2P03A03425, NN201 0222 33, and EU FP6 Marie Curie RTN CODY at Orléans France.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society