Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Gauss images of hyperbolic cusps with convex polyhedral boundary


Authors: François Fillastre and Ivan Izmestiev
Journal: Trans. Amer. Math. Soc. 363 (2011), 5481-5536
MSC (2010): Primary 57M50; Secondary 52A55, 52C26, 52C25
DOI: https://doi.org/10.1090/S0002-9947-2011-05325-0
Published electronically: April 25, 2011
MathSciNet review: 2813423
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that a 3-dimensional hyperbolic cusp with convex polyhedral boundary is uniquely determined by its Gauss image. Furthermore, any spherical metric on the torus with cone singularities of negative curvature and all closed contractible geodesics of length greater than $ 2\pi$ is the metric of the Gauss image of some convex polyhedral cusp. This result is an analog of the Rivin-Hodgson theorem characterizing compact convex hyperbolic polyhedra in terms of their Gauss images.

The proof uses a variational method. Namely, a cusp with a given Gauss image is identified with a critical point of a functional on the space of cusps with cone-type singularities along a family of half-lines. The functional is shown to be concave and to attain its maximum at an interior point of its domain. As a byproduct, we prove rigidity statements with respect to the Gauss image for cusps with or without cone-type singularities.

In a special case, our theorem is equivalent to the existence of a circle pattern on the torus, with prescribed combinatorics and intersection angles. This is the genus one case of a theorem by Thurston. In fact, our theorem extends Thurston's theorem in the same way as Rivin-Hodgson's theorem extends Andreev's theorem on compact convex polyhedra with non-obtuse dihedral angles.

The functional used in the proof is the sum of a volume term and curvature term. We show that, in the situation of Thurston's theorem, it is the potential for the combinatorial Ricci flow considered by Chow and Luo.

Our theorem represents the last special case of a general statement about isometric immersions of compact surfaces.


References [Enhancements On Off] (What's this?)

  • [Ale42] A. D. Alexandroff.
    Existence of a convex polyhedron and of a convex surface with a given metric.
    Rec. Math. [Mat. Sbornik] N.S., 11(53):15-65, 1942.
    (Russian). MR 0013540 (7:167c)
  • [Ale05] A. D. Alexandrov.
    Convex polyhedra.
    Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005. MR 2127379 (2005j:52002)
  • [And70] E. M. Andreev.
    Convex polyhedra in Lobačevskiĭspaces.
    Mat. Sb. (N.S.), 81 (123):445-478, 1970. MR 0259734 (41:4367)
  • [AVS93] D. V. Alekseevskij, È. B. Vinberg, and A. S. Solodovnikov.
    Geometry of spaces of constant curvature.
    In Geometry, II, volume 29 of Encyclopaedia Math. Sci., pages 1-138. Springer, Berlin, 1993. MR 1254932 (95b:53042)
  • [BBS09] T. Barbot, F. Bonsante, and J.-M. Schlenker.
    Collisions of particules in locally ads spacetimes, 2009.
    arXiv:0905.1823.
  • [BI08] A. I. Bobenko and I. Izmestiev.
    Alexandrov's theorem, weighted Delaunay triangulations, and mixed volumes.
    Ann. Inst. Fourier, 58(2):447-505, 2008. MR 2410380 (2009j:52016)
  • [BO04] Francis Bonahon and Jean-Pierre Otal.
    Laminations measurées de plissage des variétés hyperboliques de dimension 3.
    Ann. of Math. (2), 160(3):1013-1055, 2004. MR 2144972 (2006j:57035)
  • [BS06] F. Bonsante and J.-M. Schlenker.
    AdS manifolds with particles and earthquakes on singular surfaces. Geom. Funct. Anal., 19(1):41-82, 2009. MR 2507219 (2010b:32016)
  • [Cho07] Y. Cho.
    Trigonometry in extended hyperbolic space and extended de Sitter space, Bull. Korean Math. Soc., 46(6):1099-1133. MR 2583477 (2011a:51011)
  • [CL03] B. Chow and F. Luo.
    Combinatorial Ricci flows on surfaces.
    J. Differential Geom., 63(1):97-129, 2003. MR 2015261 (2005a:53106)
  • [Far04] M. Farber.
    Topology of closed one-forms, volume 108 of Mathematical Surveys and Monographs.
    American Mathematical Society, Providence, RI, 2004. MR 2034601 (2005c:58023)
  • [FI09] F. Fillastre and I. Izmestiev.
    Hyperbolic cusps with convex polyhedral boundary.
    Geom. Topol., 13(1):457, 2009. MR 2469522 (2009i:57039)
  • [Fil07] F. Fillastre.
    Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces.
    Ann. Inst. Fourier (Grenoble), 57(1):163-195, 2007. MR 2313089 (2008c:52021)
  • [Fil08] F. Fillastre.
    Polyhedral hyperbolic metrics on surfaces.
    Geom. Dedicata, 134:177-196, 2008.
    Erratum Geom. Dedicata, 138(1):193-194, 2009. MR 2399657 (2009b:57036); MR 2469995 (2009m:57033)
  • [Fil09] F. Fillastre.
    Fuchsian polyhedra in Lorentzian space-forms, 2009.
    arXiv:math/0702532, to appear in Mathematische Annalen.
  • [Hod92] C. D. Hodgson.
    Deduction of Andreev's theorem from Rivin's characterization of convex hyperbolic polyhedra.
    In Topology '90 (Columbus, OH, 1990), volume 1 of Ohio State Univ. Math. Res. Inst. Publ., pages 185-193. de Gruyter, Berlin, 1992. MR 1184410 (93h:57022)
  • [ILTC01] C. Indermitte, Th. M. Liebling, M. Troyanov, and H. Clémençon.
    Voronoi diagrams on piecewise flat surfaces and an application to biological growth.
    Theoret. Comput. Sci., 263(1-2):263-274, 2001.
    Combinatorics and computer science (Palaiseau, 1997). MR 1846934 (2002e:52019)
  • [Izm08] I. Izmestiev.
    A variational proof of Alexandrov's convex cap theorem.
    Discrete Comput. Geom., 40(4):561-585, 2008. MR 2453328 (2009j:52004)
  • [KP99] S. G. Krantz and H. R. Parks.
    The geometry of domains in space.
    Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Boston Inc., Boston, MA, 1999. MR 1730695 (2000m:28005)
  • [KS07] K. Krasnov and J.-M. Schlenker.
    Minimal surfaces and particles in 3-manifolds.
    Geom. Dedicata, 126:187-254, 2007. MR 2328927 (2009c:53076)
  • [Lec06] Cyril Lecuire.
    Plissage des variétés hyperboliques de dimension 3.
    Invent. Math., 164(1):85-141, 2006. MR 2207784 (2006m:57029)
  • [Lew38] H. Lewy.
    On the existence of a closed convex surface realizing a given Riemannian metric.
    Proc. Nat. Acad. Sci. USA, 24:104-106, 1938.
  • [LS00] F. Labourie and J.-M. Schlenker.
    Surfaces convexes fuchsiennes dans les espaces lorentziens à courbure constante.
    Math. Ann., 316(3):465-483, 2000. MR 1752780 (2001g:53127)
  • [Mil94] J. Milnor.
    The Schläfli differential equality.
    In Collected papers, volume 1, pages x+295. Publish or Perish Inc., Houston, TX, 1994. MR 1277810 (95c:01043)
  • [MS09] S. Moroianu and J.-M. Schlenker.
    Quasi-Fuchsian manifolds with particles. Journal of Differential Geometry, 83(1):75-129. MR 2545031 (2011a:53153)
  • [Nir53] Louis Nirenberg.
    The Weyl and Minkowski problems in differential geometry in the large.
    Comm. Pure Appl. Math., 6:337-394, 1953. MR 0058265 (15:347b)
  • [Pog73] A. V. Pogorelov.
    Extrinsic geometry of convex surfaces.
    American Mathematical Society, Providence, R.I., 1973.
    Translated from the Russian by the Israel Program for Scientific Translations, Translations of Mathematical Monographs, Vol. 35. MR 0346714 (49:11439)
  • [RH93] I. Rivin and C. D. Hodgson.
    A characterization of compact convex polyhedra in hyperbolic $ 3$-space.
    Invent. Math., 111(1):77-111, 1993. MR 1193599 (93j:52015)
  • [Riv86] I. Rivin.
    On geometry of convex polyhedra in hyperbolic 3-space.
    PhD thesis, Princeton University, June 1986.
  • [Riv94] I. Rivin.
    Euclidean structures on simplicial surfaces and hyperbolic volume.
    Ann. of Math. (2), 139(3):553-580, 1994. MR 1283870 (96h:57010)
  • [Riv03] Igor Rivin.
    Combinatorial optimization in geometry.
    Adv. in Appl. Math., 31(1):242-271, 2003. MR 1985831 (2004i:52005)
  • [Riv05] I. Rivin.
    Extra-large metrics, 2005.
    arXiv:math/0509320.
  • [Sch94] J.-M. Schlenker.
    Surfaces elliptiques dans des espaces lorentziens à courbure constante.
    C. R. Acad. Sci. Paris Sér. I Math., 319(6):609-614, 1994. MR 1298292 (96c:53098)
  • [Sch96] J.-M. Schlenker.
    Surfaces convexes dans des espaces lorentziens à courbure constante.
    Comm. Anal. Geom., 4(1-2):285-331, 1996. MR 1393565 (98c:53076)
  • [Sch04] J.-M. Schlenker.
    Hyperbolic manifolds with polyhedral boundary, 2004.
    http://www. picard.ups-tlse.fr/˜schlenker/texts/ideal.pdf.
  • [Sch06] J.-M. Schlenker.
    Hyperbolic manifolds with convex boundary.
    Invent. Math., 163(1):109-169, 2006. MR 2208419 (2006m:57023)
  • [SP00] E. Suárez-Peiró.
    A Schläfli differential formula for simplices in semi-Riemannian hyperquadrics, Gauss-Bonnet formulas for simplices in the de Sitter sphere and the dual volume of a hyperbolic simplex.
    Pacific J. Math., 194(1):229-255, 2000. MR 1756637 (2002d:53094)
  • [Thu97a] W. P. Thurston.
    The geometry and topology of three-manifolds. Recent version of the 1980 notes.
    1997.
    http://www.msri.org/communications/books/gt3m.
  • [Thu97b] W. P. Thurston.
    Three-dimensional geometry and topology. Vol. 1, volume 35 of Princeton Mathematical Series.
    Princeton University Press, Princeton, NJ, 1997.
    Edited by Silvio Levy. MR 1435975 (97m:57016)
  • [Thu98] W. P. Thurston.
    Shapes of polyhedra and triangulations of the sphere.
    In The Epstein birthday schrift, volume 1 of Geom. Topol. Monogr., pages 511-549 (electronic). Geom. Topol. Publ., Coventry, 1998. MR 1668340 (2000b:57026)
  • [Vol60] Yu. A. Volkov.
    Existence of convex polyhedra with prescribed development I.
    Vestn. Leningr. Univ., 15(19):75-86, 1960.
  • [Whi34] H. Whitney.
    Analytic extensions of differentiable functions defined in closed sets.
    Trans. Amer. Math. Soc., 36(1):63-89, 1934. MR 1501735

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57M50, 52A55, 52C26, 52C25

Retrieve articles in all journals with MSC (2010): 57M50, 52A55, 52C26, 52C25


Additional Information

François Fillastre
Affiliation: Departement of Mathematics, University of Cergy-Pontoise, UMR CNRS 8088, F-95000 Cergy-Pontoise, France
Email: francois.fillastre@u-cergy.fr

Ivan Izmestiev
Affiliation: Institut für Mathematik, MA 8-3, Technische Universität Berlin, Straße des 17. Juni 136, D-10623 Berlin, Germany
Email: izmestiev@math.tu-berlin.de

DOI: https://doi.org/10.1090/S0002-9947-2011-05325-0
Keywords: Hyperbolic cusp, convex polyhedral boundary, Gauss image, Rivin-Hodgson theorem, circle pattern.
Received by editor(s): September 9, 2009
Received by editor(s) in revised form: February 4, 2010
Published electronically: April 25, 2011
Additional Notes: The first author was partially supported by Schweizerischer Nationalfonds 200020-113199/1
The second author was supported by the DFG Research Unit 565 “Polyhedral Surfaces”
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society