Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the integrability of Tonelli Hamiltonians

Author: Alfonso Sorrentino
Journal: Trans. Amer. Math. Soc. 363 (2011), 5071-5089
MSC (2010): Primary 37J50, 37J35, 37J15; Secondary 53D12, 53D25
Published electronically: May 20, 2011
MathSciNet review: 2813408
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we discuss a weaker version of Liouville's Theorem on the integrability of Hamiltonian systems. We show that in the case of Tonelli Hamiltonians the involution hypothesis on the integrals of motion can be completely dropped and still interesting information on the dynamics of the system can be deduced. Moreover, we prove that on the $ n$-dimensional torus this weaker condition implies classical integrability in the sense of Liouville. The main idea of the proof consists in relating the existence of independent integrals of motion of a Tonelli Hamiltonian to the ``size'' of its Mather and Aubry sets. As a byproduct we point out the existence of ``non-trivial'' common invariant sets for all Hamiltonians that Poisson-commute with a Tonelli Hamiltonian.

References [Enhancements On Off] (What's this?)

  • 1. Vladimir I. Arnol$ '$d.
    Mathematical methods of classical mechanics.
    Graduate Texts in Mathematics, 60. Springer-Verlag, New York, 1989. MR 997295 (90c:58046)
  • 2. Vladimir I. Arnol$ '$d and Boris A. Khesin.
    Topological Methods in Hydrodynamics.
    Applied Mathematical Sciences, 125. Springer-Verlag, New York, 1998. MR 1612569 (99b:58002)
  • 3. Patrick Bernard.
    Symplectic aspects of Mather theory.
    Duke Math. J., 136 (3): 401-420, 2007. MR 2309170 (2008d:37108)
  • 4. Patrick Bernard.
    Existence of $ C^{1,1}$ critical subsolutions of the Hamilton-Jacobi equation on compact manifolds.
    Ann. Sci. École Norm. Sup., 40 (3): 445-452, 2007. MR 2493387 (2009m:37179)
  • 5. Luitzen E. J. Brouwer.
    Zur invarianz des $ n$-dimensionalen Gebiets.
    Math. Ann., 72 (1): 55-56, 1912. MR 1511685
  • 6. Leo T. Butler.
    Geometry and real-analytic integrability.
    Regul. Chaotic Dyn., 11 (3): 363-369, 2006. MR 2286566 (2007j:37094)
  • 7. Leo T. Butler and Gabriel P. Paternain.
    Collective geodesic flows.
    Ann. Inst. Fourier (Grenoble), 53 (1): 265-308, 2003. MR 1973073 (2004m:37054)
  • 8. Ana Cannas da Silva.
    Lectures on symplectic geometry.
    Lecture Notes in Mathematics, 1764. Springer-Verlag, Berlin, 2001. xii+217 pp. MR 1853077 (2002i:53105)
  • 9. Mario J. Dias Carneiro.
    On minimizing measures of the action of autonomous Lagrangians.
    Nonlinearity, 8 (6): 1077-1085, 1995. MR 1363400 (96j:58062)
  • 10. Marc Chaperon.
    Lois de conservation et géométrie symplectique.
    C. R. Acad. Sci., 312: 345-348, 1991. MR 1094198 (92e:58068)
  • 11. Albert Fathi.
    The Weak KAM theorem in Lagrangian dynamics.
    Cambridge University Press (to appear).
  • 12. Albert Fathi, Alessandro Giuliani and Alfonso Sorrentino.
    Uniqueness of invariant Lagrangian graphs in a homology or a cohomology class.
    Ann. Sc. Norm. Super. Pisa Cl. Sci., 8 (4): 659-680, 2009. MR 2647908
  • 13. Albert Fathi and Antonio Siconolfi.
    Existence of $ C\sp 1$ critical subsolutions of the Hamilton-Jacobi equation.
    Invent. Math., 155(2): 363-388, 2004. MR 2031431 (2004m:37114)
  • 14. Yuri N. Fedorov and Valery V. Kozlov.
    Various aspects of $ n$-dimensional rigid body dynamics.
    Amer. Math. Soc. Transl. Ser. 2, 168: 141-171, 1995. MR 1351035 (97d:70008)
  • 15. Anatoly T. Fomenko and Alexander S. Mishchenko.
    A generalized method for Liouville integration of Hamiltonian systems.
    Functional Anal. Appl., 12 (2): 46-56, 1978. MR 0516342 (58:24357)
  • 16. Ezequiel Maderna.
    Invariance of global solutions of Hamilton-Jacobi equation.
    Bull. Soc. Math. France, 130 (4): 493-506, 2002. MR 1947450 (2004b:37132)
  • 17. Ricardo Mañé.
    Generic properties and problems of minimizing measures of Lagrangian systems.
    Nonlinearity, 9 (2): 273-310, 1996. MR 1384478 (97d:58118)
  • 18. John N. Mather.
    Action minimizing invariant measures for positive definite Lagrangian systems.
    Math. Z., 207 (2): 169-207, 1991. MR 1109661 (92m:58048)
  • 19. John N. Mather.
    Variational construction of connecting orbits.
    Ann. Inst. Fourier (Grenoble), 43 (5): 1349-1386, 1993. MR 1275203 (95c:58075)
  • 20. Gabriel P. Paternain, Leonid Polterovich and Karl Friedrich Siburg.
    Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory.
    Mosc. Math. J., 3 (2): 593-619, 2003. MR 2025275 (2005c:37115)
  • 21. Henri Poincaré.
    Sur une forme nouvelle des équations de la Mécanique.
    C. R. Acad. Sci, 132: 369-371, 1901.
  • 22. Alfonso Sorrentino.
    Lecture notes on Mather's theory for Lagrangian systems.
    Preprint on arXiv 2010.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37J50, 37J35, 37J15, 53D12, 53D25

Retrieve articles in all journals with MSC (2010): 37J50, 37J35, 37J15, 53D12, 53D25

Additional Information

Alfonso Sorrentino
Affiliation: Ceremade, UMR du CNRS 7534, Université Paris-Dauphine, Place du Maréchal De Lattre De Tassigny, 75775 Paris Cedex 16, France
Address at time of publication: Department of Mathematics and Mathematical Statistics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WB, United Kingdom

Received by editor(s): March 27, 2009
Published electronically: May 20, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society