Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Deformations of finite conformal energy: Boundary behavior and limit theorems


Authors: Tadeusz Iwaniec and Jani Onninen
Journal: Trans. Amer. Math. Soc. 363 (2011), 5605-5648
MSC (2000): Primary 35J15, 35J70
DOI: https://doi.org/10.1090/S0002-9947-2011-05106-8
Published electronically: June 15, 2011
MathSciNet review: 2817402
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study homeomorphisms $ h: \mathbb{X} \stackrel{\textrm{\tiny {onto}}}{\longrightarrow} \mathbb{Y} $ between two bounded domains in $ \mathbb{R}^n$ having finite conformal energy

$\displaystyle \mathcal E [h]= \int_{\mathbb{X}} \vert\vert Dh(x) \vert\vert ^n ... ...al{d}x < \infty , \hskip0.3cm h \in \mathscr W^{1,n}(\mathbb{X} , \mathbb{Y}).$

We consider the behavior of such mappings, including continuous extension to the closure of $ \mathbb{X}$ and injectivity of $ h: \overline{\mathbb{X}} \to \overline{\mathbb{Y}}$. In general, passing to the weak $ \mathscr W^{1,n}$-limit of a sequence of homeomorphisms $ h_j: \mathbb{X} \to \mathbb{Y}$ one loses injectivity. However, if the mappings in question have uniformly bounded $ \mathscr L^1$-average of the inner distortion, then, for sufficiently regular domains $ \mathbb{X}$ and $ \mathbb{Y}$, their limit map $ h: \mathbb{X} \stackrel{\textrm{\tiny {onto}}}{\longrightarrow} \mathbb{Y}$ is a homeomorphism. Moreover, the inverse map $ f=h^{-1}: \mathbb{Y} \stackrel{\textrm{\tiny {onto}}}{\longrightarrow} \mathbb{X}$ enjoys finite conformal energy and has integrable inner distortion as well.


References [Enhancements On Off] (What's this?)

  • 1. Ambrosio, L., Fusco, N., and Pallara, D. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, 2000. MR 1857292 (2003a:49002)
  • 2. Antman, S. S. Fundamental mathematical problems in the theory of nonlinear elasticity. Univ. Maryland, College Park, Md., 1975, 35-54. MR 0468503 (57:8335)
  • 3. Armentrout, S. Concerning cellular decompositions of $ 3$-manifolds that yield $ 3$-manifolds. Trans. Amer. Math. Soc. 133 (1968), 307-332. MR 0230296 (37:5859)
  • 4. Astala, K., Iwaniec, T., Martin, G. J., and Onninen, J. Extremal mappings of finite distortion. Proc. London Math. Soc. (3) 91 (2005), no. 3, 655-702. MR 2180459 (2006h:30016)
  • 5. Ball, J. M. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1978), 337-403. MR 0475169 (57:14788)
  • 6. Ball, J. M. Global invertibility of Sobolev functions and the interpenetration of matter. Proc. Roy. Soc. Edinburgh Sect. A 88, no. 3-4, (1981), 315-328. MR 616782 (83f:73017)
  • 7. Bojarski, B., and Iwaniec, T. Analytical foundations of the theory of quasiconformal mappings in $ R\sp{n}$. Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), no. 2, 257-324. MR 731786 (85h:30023)
  • 8. Borsuk, K. Über Schnitte der $ n$-dimensionalen Euklidischen Räume. Math. Ann. 106 (1932), no. 1, 239-248. MR 1512757
  • 9. Borsuk, K. Drei Sätze über die $ n$-dimensionale Euklidische Sphäre. Fund. Math. 20 (1933), 177-190.
  • 10. Borsuk, K. Set theoretical approach to the disconnection theory of the Euclidean space. Fund. Math. 37 (1950), 217-241. MR 0042699 (13:150d)
  • 11. Borsuk, K. Theory of retracts. Monografie Matematyczne, Tom 44 Państwowe Wydawnictwo Naukowe, Warsaw, 1967. MR 0216473 (35:7306)
  • 12. Brouwer, L. E. J. Beweis des Jordanschen Satzes für den $ n$-dimensionalen Raum. Math. Ann. 71 (1911), no. 3, 314-319. MR 1511659
  • 13. Brown, M. The monotone union of open $ n$-cells is an open $ n$-cell. Proc. Amer. Math. Soc. 12 (1961), 812-814. MR 0126835 (23:A4129)
  • 14. Caccioppoli, R. Funzioni pseudo-analitiche e rappresentazioni pseudo-conformi delle superficie riemanniane. (Italian) Ricerche Mat. 2 (1953), 104-127. MR 0062845 (16:27c)
  • 15. Carathéodory, C. Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis. Math. Ann. 73 (1913), 305-320. MR 1511735
  • 16. Ciarlet, P. G. Mathematical elasticity. Vol. I. Three-dimensional elasticity. Studies in Mathematics and its Applications, 20, North-Holland Publishing Co., Amsterdam, 1988. MR 936420 (89e:73001)
  • 17. Csörnyei, M., Hencl, S, and Malý, J. Homeomorphisms in the Sobolev space $ W^{1,n-1}$. J. Reine Angew. Math. 644 (2010), 221-235. MR 2671780
  • 18. Duren, P. Harmonic mappings between planar domains, Cambridge Tracts in Mathematics, 156, Cambridge University Press, Cambridge, 2004. MR 2048384 (2005d:31001)
  • 19. Gehring, F. W., and Lehto, O. On the total differentiability of functions of a complex variable. Ann. Acad. Sci. Fenn. Ser. A I No. 272 (1959). MR 0124487 (23:A1799)
  • 20. Giannetti, F., Iwaniec, T., Onninen, J., and Verde, A. Estimates of Jacobians by subdeterminants. J. Geom. Anal. 12 (2002), no. 2, 223-254. MR 1888516 (2002k:42042)
  • 21. Gol'dstein V. M., and Vodop'yanov S. K. Quasiconformal mappings and spaces of functions with generalized first derivatives. Sibirsk. Mat. Z. 17 (1976), 515-531. MR 0414869 (54:2961)
  • 22. Hajłasz, P., and Malý, J. Approximation in Sobolev spaces of nonlinear expressions involving the gradient. Ark. Mat. 40 (2002), no. 2, 245-274. MR 1948065 (2003m:46052)
  • 23. Haver, W. Cellular mappings on manifolds. Ph.D. Dissertation, State University of New York at Binghamton, ProQuest LLC, Ann Arbor, MI, 1971, 60pp. MR 2620456
  • 24. Haver, W. A characterization theorem for cellular maps. Bull. Amer. Math. Soc. 76 (1970), 1277-1280. MR 0267538 (42:2440)
  • 25. Heinonen, J., Kilpeläinen, T., and Martio, O. Nonlinear potential theory of degenerate elliptic equations. Oxford Mathematical Monographs, 1993. MR 1207810 (94e:31003)
  • 26. Heinonen, J., and Koskela, P. Sobolev mappings with integrable dilatations. Arch. Rational Mech. Anal. 125 (1993), no. 1, 81-97. MR 1241287 (94i:30020)
  • 27. Hencl, S., and Koskela, P. Regularity of the inverse of a planar Sobolev homeomorphism. Arch. Ration. Mech. Anal. 180 (2006), no. 1, 75-95. MR 2211707 (2007e:30020)
  • 28. Iwaniec, T., Koskela, P., and Onninen, J. Mappings of finite distortion: Monotonicity and continuity. Invent. Math. 144 (2001), no. 3, 507-531. MR 1833892 (2002c:30029)
  • 29. Iwaniec, T., and Martin, G. J. Geometric Function Theory and Non-linear Analysis. Oxford Mathematical Monographs, 2001. MR 1859913 (2003c:30001)
  • 30. Iwaniec, T., and Onninen, J. $ {\mathcal H}^1$-estimates of Jacobians by subdeterminants. Math. Ann. 324 (2002), no. 2, 341-358. MR 1933861 (2003i:42027)
  • 31. Iwaniec, T., and Onninen, J. $ n$-Harmonic mappings between annuli. Mem. Amer. Math. Soc., to appear.
  • 32. Iwaniec, T., and Onninen, J. Hyperelastic deformations of smallest total energy. Arch. Rational Mech. Anal. 194 (2009), no. 3, 927-986. MR 2563629 (2010j:49005)
  • 33. Iwaniec, T., and Onninen, J. Deformations of finite conformal energy: Existence, and removability of singularities. Proc. Lond. Math. Soc. (3), 100 (2010), no. 1, 1-23. MR 2578466 (2011a:30063)
  • 34. Iwaniec, T. and Šverák, V. On mappings with integrable dilatation. Proc. Amer. Math. Soc. 118 (1993), no. 1, 181-188. MR 1160301 (93k:30023)
  • 35. Kauhanen, J., Koskela, P., and Malý, J. Mappings of finite distortion: Discreteness and openness. Arch. Ration. Mech. Anal. 160 (2001), no. 2, 135-151. MR 1864838 (2002m:30023)
  • 36. Kovalev, L. V., and Onninen J. Boundary values of mappings of finite distortion. Rep. Univ. Jyväskylä Dep. Math. Stat. 92 (2003), 175-182. MR 2061003 (2005d:30032)
  • 37. Kuratowski, K. Topology. Vol. I. Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Polish Scientific Publishers, Warsaw, 1966. MR 0217751 (36:840)
  • 38. Kuratowski, K. Topology. Vol. II. Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Polish Scientific Publishers, Warsaw, 1968. MR 0259835 (41:4467)
  • 39. Kuusalo, T. Quasiconformal mappings without boundary extensions. Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 331-338. MR 802494 (87a:30035)
  • 40. Lafont, J. F. Strong Jordan separation and applications to rigidity. J. London Math. Soc. (2) 73 (2006), no. 3, 681-700. MR 2241974 (2007h:53057)
  • 41. Lafont, J. F. A note on strong Jordan separation. Publ. Mat. 53 (2009), no. 2, 515-525. MR 2543863 (2010h:57036)
  • 42. Lebesgue, H. Sur le problème de Dirichlet. Rend. Circ. Palermo 27 (1907), 371-402.
  • 43. Malý, J., and Martio, O. Lusin's condition (N) and mappings of the class $ W\sp {1,n}$. J. Reine Angew. Math. 458 (1995), 19-36. MR 1310951 (95m:26024)
  • 44. Manfredi, J. J. Weakly monotone functions. J. Geom. Anal. 4 (1994), no. 3, 393-402. MR 1294334 (95m:30032)
  • 45. Manfredi, J. J., and Villamor, E. Mappings with integrable dilatation in higher dimensions. Bull. Amer. Math. Soc. (N.S.) 32 (1995), no. 2, 235-240. MR 1313107 (95m:30033)
  • 46. McAuley, L. F. The Proceedings of the First Conference on Monotone Mappings and Open Mappings. Edited by Louis F. McAuley. State University of New York at Binghamton, 1971. MR 0287518 (44:4722)
  • 47. Menchoff, D. Sur les différentielles totales des fonctions univalentes. Math. Ann. 105 (1931), 75-85. MR 1512705
  • 48. Morrey, C.B. The Topology of (Path) Surfaces. Amer. J. Math. 57 (1935), no. 1, 17-50. MR 1507053
  • 49. Morrey, C.B. Quasi-convexity and the lower semicontinuity of multiple integrals. Pacific J. Math. 2 (1952), 25-53. MR 0054865 (14:992a)
  • 50. Müller, S. Weak continuity of determinants and nonlinear elasticity. C. R. Acad. Sci. Paris Sér. I Math. 307 (1988), no. 9, 501-506. MR 964116 (90b:49023)
  • 51. Müller, S., Spector, S. J., and Tang, Q. Invertibility and a topological property of Sobolev maps. SIAM J. Math. Anal. 27 (1996), no. 4, 959-976. MR 1393418 (97e:46041)
  • 52. Näkki, R. Boundary behavior of quasiconformal mappings in $ n$-space. Ann. Acad. Sci. Fenn. Ser. A I Math. 484 (1970), 1-50. MR 0285707 (44:2925)
  • 53. Onninen, J. Regularity of the inverse of spatial mappings with finite distortion, Calc. Var. Partial Differential Equations 26 (2006), no. 3, 331-341. MR 2232209 (2007b:30023)
  • 54. Osgood, W. F. and Taylor, E. H. Conformal transformations on the boundaries of their regions of definition. Trans. Amer. Math. Soc. 14 (1913), 277-298. MR 1500947
  • 55. Reshetnyak, Yu. G. Space mappings with bounded distortion. Translations of Mathematical Monographs, 73. American Mathematical Society, Providence, RI, 1989. MR 994644 (90d:30067)
  • 56. Rickman, S. Quasiregular mappings. Springer-Verlag, Berlin, 1993. MR 1238941 (95g:30026)
  • 57. Sard, A. The measure of the critical values of differentiable maps. Bull. Am. Math. Soc. 48 (1942), 883-890. MR 0007523 (4:153c)
  • 58. Siebenmann, L. C. Approximating cellular maps by homeomorphisms. Topology 11 (1972), 271-294. MR 0295365 (45:4431)
  • 59. Šverák, V. Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal. 100 (1988), no. 2, 105-127. MR 913960 (89g:73013)
  • 60. Tang, Q. Almost-everywhere injectivity in nonlinear elasticity. Proc. Roy. Soc. Edinburgh Sect. A 109 (1988), no. 1-2, 79-95. MR 952330 (89g:73014)
  • 61. Wilder, R. L. Topology of Manifolds. American Mathematical Society Colloquium Publications, vol. 32. American Mathematical Society, New York, N. Y., 1949. MR 0029491 (10:614c)
  • 62. Vuorinen, M. Conformal geometry and quasiregular mappings. Lecture Notes in Mathematics, 1319. Springer-Verlag, Berlin, 1988. MR 950174 (89k:30021)
  • 63. Väisälä, J. Lectures on $ n$-dimensional quasiconformal mappings. Lecture Notes in Mathematics, Vol. 229, Springer-Verlag, Berlin-New York, 1971. MR 0454009 (56:12260)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 35J15, 35J70

Retrieve articles in all journals with MSC (2000): 35J15, 35J70


Additional Information

Tadeusz Iwaniec
Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
Email: tiwaniec@syr.edu

Jani Onninen
Affiliation: Department of Mathematics, Syracuse University, Syracuse, New York 13244
Email: jkonnine@syr.edu

DOI: https://doi.org/10.1090/S0002-9947-2011-05106-8
Keywords: Boundary behavior of homeomorphisms, limit theorems, energy integrals, quasiconformal hyperelasticity.
Received by editor(s): August 4, 2008
Received by editor(s) in revised form: May 13, 2009
Published electronically: June 15, 2011
Additional Notes: The first author was supported by NSF grant DMS-0800416.
The second author was supported by NSF grant DMS-0701059.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society