Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Bifurcation from codimension one relative homoclinic cycles

Authors: Ale Jan Homburg, Alice C. Jukes, Jürgen Knobloch and Jeroen S.W. Lamb
Journal: Trans. Amer. Math. Soc. 363 (2011), 5663-5701
MSC (2010): Primary 34C37, 37G40, 34C23
Published electronically: June 20, 2011
MathSciNet review: 2817404
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study bifurcations of relative homoclinic cycles in flows that are equivariant under the action of a finite group. The relative homoclinic cycles we consider are not robust, but have codimension one. We assume real leading eigenvalues and connecting trajectories that approach the equilibria along leading directions. We show how suspensions of subshifts of finite type generically appear in the unfolding. Descriptions of the suspended subshifts in terms of the geometry and symmetry of the connecting trajectories are provided.

References [Enhancements On Off] (What's this?)

  • 1. M. A. D. Aguiar, S. B. S. D. Castro, and I. S. Labouriau.
    Dynamics near a heteroclinic network.
    Nonlinearity, 18(1):391-414, 2005.
    With multimedia enhancement available from the abstract page in the online journal. MR 2109482 (2006a:37020)
  • 2. P. Ashwin and M. J. Field.
    Heteroclinic networks in coupled cell systems.
    Arch. Ration. Mech. Anal., 148(2):107-143, 1999. MR 1716564 (2001d:37072)
  • 3. S. Bochner.
    Compact groups of differentiable transformations.
    Ann. of Math., 46:372-381, 1945. MR 0013161 (7:114g)
  • 4. G. E. Bredon.
    Introduction to compact transformation groups.
    Pure and Applied Mathematics, 46. Academic Press., New York-London, XIII, 459 pp., 1972. MR 0413144 (54:1265)
  • 5. P. Chossat and R. Lauterbach.
    Methods in equivariant bifurcations and dynamical systems, volume 15 of Advanced Series in Nonlinear Dynamics.
    World Scientific Publishing Co. Inc., River Edge, NJ, 2000. MR 1831950 (2002b:37081)
  • 6. S.-N. Chow, B. Deng, and B. Fiedler.
    Homoclinic bifurcation at resonant eigenvalues.
    J. Dynam. Differential Equations, 2(2):177-244, 1990. MR 1050642 (91g:58199)
  • 7. B. Deng.
    The Shilnikov problem, exponential expansion, strong $ \lambda$-lemma, $ C\sp 1$-linearization, and homoclinic bifurcation.
    J. Differential Equations, 79(2):189-231, 1989. MR 1000687 (90k:58161)
  • 8. G. L. dos Reis.
    Structural stability of equivariant vector fields on two-manifolds.
    Trans. Amer. Math. Soc., 283(2):633-643, 1984. MR 737889 (85h:58095)
  • 9. M. J. Field.
    Equivariant dynamical systems.
    Trans. Amer. Math. Soc., 259(1):185-205, 1980. MR 561832 (82i:58037)
  • 10. M. J. Field.
    Lectures on bifurcations, dynamics and symmetry, volume 356 of Pitman Research Notes in Mathematics Series.
    Longman, Harlow, 1996. MR 1425388 (97h:58115)
  • 11. M. J. Field.
    Dynamics and symmetry, volume 3 of ICP Advanced Texts in Mathematics.
    World Scientific, London, 2007. MR 2358722 (2009e:37021)
  • 12. J.-M. Gambaudo, P. Glendinning, and C. Tresser.
    The gluing bifurcation. I. Symbolic dynamics of the closed curves.
    Nonlinearity, 1:203-214, 1988. MR 928953 (89a:58080)
  • 13. M. Golubitsky, I. Stewart, and D.G. Schaeffer.
    Singularities and groups in bifurcation theory. Vol. II, volume 69 of Applied Mathematical Sciences.
    Springer, New York, 1988. MR 950168 (89m:58038)
  • 14. M. Golubitsky, J. W. Swift, and E. Knobloch.
    Symmetries and pattern selection in Rayleigh-Bénard convection.
    Physica D, 10:249-276, 1984. MR 763472 (86c:58027)
  • 15. J. Guckenheimer and P. J. Holmes.
    Structurally stable heteroclinic cycles.
    Math. Proc. Cambridge Philos. Soc., 103(1):189-192, 1988. MR 913462 (88k:58109)
  • 16. A. J. Homburg.
    Global aspects of homoclinic bifurcations of vector fields.
    Mem. Amer. Math. Soc., 121(578):viii+128, 1996. MR 1327210 (96i:58125)
  • 17. A. J. Homburg, A. Jukes, J. Knobloch, and J. S. W. Lamb.
    Saddle-nodes and period-doublings of Smale horseshoes: A case study near resonant homoclinic bellows.
    Bull. Belg. Math. Soc. Simon Stevin, 15(5):833-850, 2008. MR 2484136
  • 18. A. J. Homburg and J. Knobloch.
    Multiple homoclinic trajectories in conservative and reversible systems.
    Trans. Amer. Math. Soc., 358(4):1715-1740, 2006. MR 2186994 (2007a:34073)
  • 19. A. J. Homburg, H. Kokubu, and M. Krupa.
    The cusp horseshoe and its bifurcations in the unfolding of an inclination-flip homoclinic trajectory.
    Ergodic Theory Dynam. Systems, 14(4):667-693, 1994. MR 1304138 (96a:58134)
  • 20. A. C. Jukes.
    On homoclinic bifurcations with symmetry.
    Ph.D. thesis, Imperial College, 2006.
  • 21. A. Katok and B. Hasselblatt.
    Introduction to the modern theory of dynamical systems. With a supplement by Anatole Katok and Leonardo Mendoza.
    Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, xviii, 802 pp., 1997. MR 1326374 (96c:58055)
  • 22. V. Kirk and M. Silber.
    A competition between heteroclinic cycles.
    Nonlinearity, 7(6):1605-1621, 1994. MR 1304441 (95j:58121)
  • 23. M. Kisaka, H. Kokubu, and H. Oka.
    Bifurcations to $ N$-homoclinic trajectories and $ N$-periodic solutions in vector fields.
    J. Dynam. Differential Equations, 5(2):305-357, 1993. MR 1223451 (94m:58158)
  • 24. J. Knobloch.
    Lin's method for discrete dynamical systems.
    J. of Difference Eqn. and Appl., 6:577-623, 2000. MR 1802448 (2001k:37018)
  • 25. J. Knobloch.
    Lin's method for discrete and continuous dynamical systems and applications.
    Habilitation thesis, Technische Universität Ilmenau, 2004.
  • 26. M. Krupa.
    Robust heteroclinic cycles.
    J. Nonlinear Sci., 7(2):129-176, 1997. MR 1437986 (98g:58126)
  • 27. M. Krupa and I. Melbourne.
    Asymptotic stability of heteroclinic cycles in systems with symmetry.
    Ergodic Theory Dynam. Systems, 15(1):121-147, 1995. MR 1314972 (96g:58101)
  • 28. M. Krupa and I. Melbourne.
    Nonasymptotically stable attractors in $ {\rm O}(2)$ mode interactions.
    In Normal forms and homoclinic chaos (Waterloo, ON, 1992), volume 4 of Fields Inst. Commun., pages 219-232. Amer. Math. Soc., Providence, RI, 1995. MR 1350551 (96h:58103)
  • 29. M. Krupa and I. Melbourne.
    Asymptotic stability of heteroclinic cycles in systems with symmetry. II.
    Proc. Roy. Soc. Edinburgh Sect. A, 134(6):1177-1197, 2004. MR 2107489 (2006e:37086)
  • 30. X.-B. Lin.
    Using Melnikovs method to solve Shilnikovs problems.
    Proc. Roy. Soc. Edinburgh, 116A:295-325, 1990. MR 1084736 (92b:58195)
  • 31. K. Matthies.
    A subshift of finite type in the Takens-Bogdanov bifurcation with $ D_3$ symmetry.
    Doc. Math., 4:463-485, 1999. MR 1713483 (2001m:37105)
  • 32. I. Melbourne.
    An example of a nonasymptotically stable attractor.
    Nonlinearity, 4(3):835-844, 1991. MR 1124335 (92f:58093)
  • 33. J. Palis and W. de Melo.
    Geometric theory of dynamical systems. An introduction.
    Transl. from the Portuguese by A. K. Manning.
    Springer-Verlag, New York - Heidelberg - Berlin, 1982. MR 669541 (84a:58004)
  • 34. B. Sandstede.
    Verzweigungstheorie homokliner Verdopplungen.
    Ph.D. thesis, Freie Universität Berlin, 1993.
  • 35. L. P. Shilnikov.
    On the generation of a periodic motion from trajectories doubly asymptotic to an equilibrium state of saddle type.
    Math. USSR Sbornik, 6:427-438, 1968.
  • 36. N. Sottocornola.
    Simple homoclinic cycles in low-dimensional spaces.
    J. Differential Equations, 210(1):135-154, 2005. MR 2114127 (2005h:37050)
  • 37. D. V. Turaev.
    Bifurcations of a homoclinic ``figure eight'' of a multidimensional saddle.
    Russian Math. Surveys, 43:264-265, 1988. MR 971495 (90m:58156)
  • 38. A. Vanderbauwhede and B. Fiedler.
    Homoclinic period blow-up in reversible and conservative systems.
    Z. Angew. Math. Phys., 43:292-318, 1992. MR 1162729 (93f:58209)
  • 39. F. Verhulst.
    Nonlinear differential equations and dynamical systems. 2nd rev. a. exp. ed.
    Springer, Berlin, viii, 306 p., 1996. MR 1422255 (97g:34003)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 34C37, 37G40, 34C23

Retrieve articles in all journals with MSC (2010): 34C37, 37G40, 34C23

Additional Information

Ale Jan Homburg
Affiliation: KdV Institute for Mathematics, University of Amsterdam, Science Park 904,1098 XH Amsterdam, The Netherlands – and – Department of Mathematics, VU University Amsterdam, De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

Alice C. Jukes
Affiliation: Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Jürgen Knobloch
Affiliation: Department of Mathematics, TU Ilmenau, Postfach 100565, 98684 Ilmenau, Germany

Jeroen S.W. Lamb
Affiliation: Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom

Received by editor(s): September 14, 2008
Received by editor(s) in revised form: July 22, 2009
Published electronically: June 20, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society