Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Labeled trees and localized automorphisms of the Cuntz algebras


Authors: Roberto Conti and Wojciech Szymański
Journal: Trans. Amer. Math. Soc. 363 (2011), 5847-5870
MSC (2010): Primary 46L40, 46L05, 37B10
DOI: https://doi.org/10.1090/S0002-9947-2011-05234-7
Published electronically: June 2, 2011
MathSciNet review: 2817412
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We initiate a detailed and systematic study of automorphisms of the Cuntz algebras $ \mathcal{O}_n$ which preserve both the diagonal and the core UHF-subalgebra. A general criterion of invertibility of endomorphisms yielding such automorphisms is given. Combinatorial investigations of endomorphisms related to permutation matrices are presented. Key objects entering this analysis are labeled rooted trees equipped with additional data. Our analysis provides insight into the structure of $ {\rm Aut}(\mathcal{O}_n)$ and leads to numerous new examples. In particular, we completely classify all such automorphisms of $ \mathcal{O}_2$ for the permutation unitaries in $ \otimes^4 M_2$. We show that the subgroup of $ {\rm Out}(\mathcal{O}_2)$ generated by these automorphisms contains a copy of the infinite dihedral group $ {\mathbb{Z}} \rtimes {\mathbb{Z}}_2$.


References [Enhancements On Off] (What's this?)

  • 1. R. J. Archbold, On the `flip-flop' automorphism of $ C^*(S_1,S_2)$, Quart. J. Math. Oxford Ser. (2) 30 (1979), 129-132. MR 534827 (80e:47038)
  • 2. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput., 24 (1997), 235-265. MR 1484478
  • 3. R. Conti and F. Fidaleo, Braided endomorphisms of Cuntz algebras, Math. Scand. 87 (2000), 93-114. MR 1776967 (2003g:46065)
  • 4. R. Conti and C. Pinzari, Remarks on endomorphisms of Cuntz algebras, J. Funct. Anal. 142 (1996), 369-405. MR 1423039 (98e:46065)
  • 5. J. Cuntz, Simple $ C^*$-algebras generated by isometries, Commun. Math. Phys. 57 (1977), 173-185. MR 0467330 (57:7189)
  • 6. J. Cuntz, Automorphisms of certain simple $ C^*$-algebras, in Quantum fields-algebras, processes, ed. L. Streit, Springer, 1980, pp. 187-196. MR 601811 (82d:46089)
  • 7. J. Cuntz and W. Krieger, A class of $ C^*$-algebras and topological Markov chains, Invent. Math. 56 (1980), 251-268. MR 561974 (82f:46073a)
  • 8. R. Gohm, A probabilistic index for completely positive maps and an application, J. Operator Theory 54 (2005), 339-361. MR 2186358 (2006h:46061)
  • 9. A. Hopenwasser, J. R. Peters and S. C. Power, Subalgebras of graph $ C^*$-algebras, New York J. Math. 11 (2005), 351-386. MR 2188247 (2007b:47189)
  • 10. M. Izumi, Subalgebras of infinite $ C^*$-algebras with finite Watatani indices. I. Cuntz algebras, Commun. Math. Phys. 155 (1993), 157-182. MR 1228532 (94e:46104)
  • 11. M. Izumi, Finite group actions on $ C^*$-algebras with the Rohlin property. I, Duke Math. J. 122 (2004), 233-280. MR 2053753 (2005a:46142)
  • 12. V. F. R. Jones, On a family of almost commuting endomorphisms, J. Funct. Anal. 122 (1994), no. 1, 84-90. MR 1274584 (95c:46106)
  • 13. V. F. R. Jones and V. S. Sunder, Introduction to subfactors, London Math. Soc. Lecture Note Ser. 234, Cambridge University Press, Cambridge, 1997. MR 1473221 (98h:46067)
  • 14. K. Kawamura, Polynomial endomorphisms of the Cuntz algebras arising from permutations. I. General theory, Lett. Math. Phys. 71 (2005), 149-158. MR 2134694 (2006e:46062)
  • 15. K. Kawamura, Branching laws for polynomial endomorphisms of Cuntz algebras arising from permutations, Lett. Math. Phys. 77 (2006), 111-126. MR 2251300 (2008c:46080)
  • 16. A. Kishimoto and A. Kumjian, Crossed products of Cuntz algebras by quasi-free automorphisms, in `Operator algebras and their applications' (Waterloo, 1994/1995), 173-192, Fields Inst. Commun. 13, Amer. Math. Soc., Providence, 1997. MR 1424962 (98h:46076)
  • 17. R. Longo, A duality for Hopf algebras and for subfactors. I, Commun. Math. Phys. 159 (1994), 133-150. MR 1257245 (95h:46097)
  • 18. K. Matsumoto, Orbit equivalence of topological Markov shifts and Cuntz-Krieger algebras, Pacific J. Math. 246 (2010), 199-225. MR 2645883
  • 19. K. Matsumoto and J. Tomiyama, Outer automorphisms of Cuntz algebras, Bull. London Math. Soc. 25 (1993), 64-66. MR 1190366 (94a:46089)
  • 20. H. Matui, Classification of outer actions of $ {\mathbb{Z}}^N$ on $ \mathcal{O}_2$, Adv. Math. 217 (2008), 2872-2896. MR 2397470 (2009h:46133)
  • 21. S. C. Power, Homology for operator algebras, III. Partial isometry homotopy and triangular algebras, New York J. Math. 4 (1998), 35-56. MR 1609023 (99g:47108)
  • 22. S. C. Power, Subalgebras of graph $ C^*$-algebras, Lecture Notes for the Summer School Course at WOAT 2006, Lisbon, 1-5 September 2006.
  • 23. I. Raeburn, Graph algebras, CBMS Regional Conf. Series in Math. 103, Amer. Math. Soc., Providence, 2005. MR 2135030 (2005k:46141)
  • 24. M. Rørdam, A short proof of Elliott's theorem: $ \mathcal{O}_2\otimes\mathcal{O}_2\cong\mathcal{O}_2$, C. R. Math. Rep. Acad. Sci. Canada 16 (1994), 31-36. MR 1276341 (95d:46064)
  • 25. J. Spielberg, Free-product groups, Cuntz-Krieger algebras, and covariant maps, Internat. J. Math. 2 (1991), 457-476. MR 1113572 (92j:46120)
  • 26. W. Szymański, On localized automorphisms of the Cuntz algebras which preserve the diagonal subalgebra, in `New Development of Operator Algebras', R.I.M.S. Kôkyûroku 1587 (2008), 109-115.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L40, 46L05, 37B10

Retrieve articles in all journals with MSC (2010): 46L40, 46L05, 37B10


Additional Information

Roberto Conti
Affiliation: Department of Mathematics, School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
Address at time of publication: Department of Mathematics, University of Rome 2 Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
Email: conti@mat.uniroma2.it

Wojciech Szymański
Affiliation: Department of Mathematics, School of Mathematical and Physical Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
Address at time of publication: Department of Mathematics and Computer Science, The University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
Email: szymanski@imada.sdu.dk

DOI: https://doi.org/10.1090/S0002-9947-2011-05234-7
Keywords: Cuntz algebra, endomorphism, automorphism, Cartan subalgebra, core UHF-subalgebra, normalizer, permutation, tree
Received by editor(s): September 8, 2008
Received by editor(s) in revised form: October 15, 2009
Published electronically: June 2, 2011
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society