Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On multiplicative conditionally free convolution


Authors: Mihai Popa and Jiun-Chau Wang
Journal: Trans. Amer. Math. Soc. 363 (2011), 6309-6335
MSC (2000): Primary 46L53; Secondary 05A18, 60E07
DOI: https://doi.org/10.1090/S0002-9947-2011-05242-6
Published electronically: June 27, 2011
MathSciNet review: 2833556
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the combinatorics of non-crossing partitions, we construct a conditionally free analogue of Voiculescu's $ S$-transform. The result is applied to the analytical description of conditionally free multiplicative convolution and the characterization of infinite divisibility.


References [Enhancements On Off] (What's this?)

  • 1. S. Belinschi and H. Bercovici.
    Partially defined semigroups relative to multiplicative free convolution,
    Int. Math. Res. Not. 2005, no. 2, 65-101. MR 2128863 (2006f:46061)
  • 2. S. Belinschi and H. Bercovici.
    Hinčin's theorem for multiplicative free convolution,
    Canadian Math. Bulletin, 2008, Vol. 51, no. 1, 26-31. MR 2384735 (2008m:46130)
  • 3. H. Bercovici and V. Pata.
    Stable laws and domains of attraction in free probability theory,
    Ann. of Math. (2), 1449 (1999), 1023-1060. MR 1709310 (2000i:46061)
  • 4. H. Bercovici and D. Voiculescu.
    Lévy-Hinčin type theorems for multiplicative and additive free convolution,
    Pacific Journal of Mathematics, (1992), Vol. 153, No. 2, 217-248. MR 1151559 (93k:46052)
  • 5. H. Bercovici and J.C. Wang.
    Limit theorems for free multiplicative convolutions,
    Trans. Amer. Math. Soc. 360 (2008), no. 11, 6089-6102. MR 2425704
  • 6. F. Boca.
    Free products of completely positive maps and spectral sets,
    J. Funct. Anal. 97 (1991), no. 2, 251-263. MR 1111181 (92f:46064)
  • 7. M. Bożejko and R. Speicher.
    $ \psi$-independent and symmetrized white noises,
    Quantum Probability and Related Topics, (L. Accardi, ed.), World Scientific, Singapore, VI (1991), 219-236. MR 1149828
  • 8. M. Bożejko, M. Leinert and R. Speicher.
    Convolution and Limit Theorems for Conditionally free Random Variables,
    Pac. J. Math. 175 (1996), 357-388. MR 1432836 (98j:46069)
  • 9. K. Dykema.
    Multilinear function series and transforms in free probability theory,
    Adv. Math. 208 (2007), no. 1, 351-407. MR 2304321 (2008k:46193)
  • 10. K. Dykema.
    On the S-transform over a Banach algebra,
    J. Func. Anal. 231 (2006), no. 1, 90-110. MR 2190164 (2006k:46106)
  • 11. U. Franz.
    Boolean convolution of probability measures on the unit circle,
    arXiv:math/0403243.
  • 12. U. Haagerup.
    On Voiculescu's $ R$- and $ S$-transforms for Free non-commuting Random Variables,
    Fields Institute Communications, vol. 12(1997), 127-148. MR 1426838 (98c:46137)
  • 13. A. Hinčin.
    Zur Theorie der unbeschränkt teilbaren Verteilungsgesetze,
    Mat. Sb. 2 (1937), 79-119.
  • 14. A.D. Krystek.
    Infinite divisibility for conditionally free convolution,
    Infin. Dim. Anal. Quantum Prob. Rel. Top. 10 (2007), no. 4, 499-522. MR 2376439 (2009d:46118)
  • 15. F. Lehner.
    Cumulants in noncommutative probability theory. I. Noncommutative exchangeability systems,
    Math. Z. 248 (2004), no. 1, 67-100. MR 2092722 (2005h:46091)
  • 16. A. Nica and R. Speicher.
    Lectures on the Combinatorics of the Free Probability,
    London Mathematical Society Lecture Note Series 335, Cambridge University Press, 2006. MR 2266879 (2008k:46198)
  • 17. M. Popa.
    A combinatorial approach to monotonic independence over a C*-algebra,
    Pacific J. Math. 237 (2008), no. 2, 299-325. MR 2421124 (2009k:46119)
  • 18. M. Popa.
    A new proof for the multiplicative property of the Boolean cumulants with applications to the operator-valued case,
    Colloq. Math., vol. 117 (2009), no. 1, 81-93. MR 2539549 (2010k:46067)
  • 19. T. Speed.
    Cumulants and partition lattices,
    Austral. J. Stat. 25 (1983) 378-388. MR 725217 (85f:62020)
  • 20. R. Speicher.
    Combinatorial Theory of the Free Product with Amalgamation and Operator- Valued Free Probability Theory,
    Mem. AMS, Vol. 132, No 627 (1998). MR 1407898 (98i:46071)
  • 21. R. Speicher and R. Waroudi.
    Boolean convolution,
    Fields Institute Communications, Vol. 12 (D. Voiculescu, ed.), AMS, 1997, pp. 267-279. MR 1426845 (98b:46084)
  • 22. D.V. Voiculescu, K. Dykema, and A. Nica.
    Free random variables,
    CRM Monograph Series, 1. AMS, Providence, RI, 1992. MR 1217253 (94c:46133)
  • 23. J.C. Wang.
    Limit laws for Boolean convolutions,
    Pacific J. Math. 237 (2008), no. 2, 349-371. MR 2421126 (2009h:46128)
  • 24. J.C. Wang.
    Limit theorems for additive c-free convolution,
    (2008), preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 46L53, 05A18, 60E07

Retrieve articles in all journals with MSC (2000): 46L53, 05A18, 60E07


Additional Information

Mihai Popa
Affiliation: Department of Mathematics, Indiana University at Bloomington, Rawles Hall, 831 E 3rd Street, Bloomington, Indiana 47405
Email: mipopa@indiana.edu

Jiun-Chau Wang
Affiliation: Department of Mathematics and Statistics, Queen’s University, Jeffery Hall, Kingston, Ontario, Canada K7M 7H7
Email: jiuwang@mast.queensu.ca

DOI: https://doi.org/10.1090/S0002-9947-2011-05242-6
Keywords: Conditionally free independence, multiplicative convolution, $S$-transform, infinite divisibility, non-crossing and non-crossing linked partitions.
Received by editor(s): May 29, 2008
Received by editor(s) in revised form: June 23, 2009, and October 20, 2009
Published electronically: June 27, 2011
Additional Notes: The first author was partially supported by the grant 2-CEx06-11-34 of the Romanian Government
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society