Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A Fourier transform approach to Christoffel's problem


Authors: Paul Goodey, Vladyslav Yaskin and Maryna Yaskina
Journal: Trans. Amer. Math. Soc. 363 (2011), 6351-6384
MSC (2010): Primary 52A20, 42B10, 33C55
DOI: https://doi.org/10.1090/S0002-9947-2011-05267-0
Published electronically: July 26, 2011
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We use Fourier transform techniques to provide a new approach to Berg's solution of the Christoffel problem. This leads to an explicit description of Berg's spherical kernel and to new regularity properties of the associated integral transform.


References [Enhancements On Off] (What's this?)

  • 1. A. D. Aleksandrov, Über die Frage nach der Existenz eines Körpers bei dem die Summe der Hauptkrümmungsradien eine gegebene positive Funktion ist, welche die Bedingungen der Geschlossenheit genügt, Doklady Akad. Nauk 14 (1937), 59-60.
  • 2. A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, II. Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen (in Russian), Mat. Sbornik N.S. 2 (1937), 1205-1238.
  • 3. A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, III. Die Erweiterung zweier Lehrsätze Minkowskis über die konvexen Polyeder auf beleibige konvexe Flächen (in Russian), Mat. Sbornik N.S. 3 (1938), 27-46.
  • 4. C. Berg, Corps convexes et potentiels sphériques (French), Mat.-Fys. Medd. Danske Vid. Selsk. 37 (1969) no. 6. MR 0254789 (40:7996)
  • 5. H. Busemann, Convex surfaces, Interscience Tracts in Pure and Applied Mathematics, no. 6, Interscience Publishers, Inc., New York, 1958. MR 0105155 (21:3900)
  • 6. S.-Y. Cheng, S.-T. Yau, On the regularity of the solution of the $ n$-dimensional Minkowski problem, Commun. Pure Appl. Math. 29 (1976), 495-516. MR 0423267 (54:11247)
  • 7. E. B. Christoffel, Über die Bestimmung der Gestalt einer krummen Oberfläche durch lokale Messungen auf derselben, J. für die Reine und Angewandte Math. 64 (1865), 193-209.
  • 8. W. Fenchel, B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-fys. Medd. 16 (1938).
  • 9. W. J. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathematika 14 (1967), 1-13. MR 0217699 (36:788)
  • 10. W. J. Firey, Christoffel's problem for general convex bodies, Mathematika 15 (1968), 7-21. MR 0230259 (37:5822)
  • 11. I. M. Gelfand, G. E. Shilov, Generalized functions, Vol. 1 Properties and Operations, Academic Press, New York and London, 1964. MR 0435831 (55:8786a)
  • 12. D. Gilbarg, N. Trudinger, Elliptic partial differential equations of second order, Springer Verlag, Berlin, 1983. MR 737190 (86c:35035)
  • 13. H. Gluck, Manifolds with preassigned curvature - a survey, Bull. Amer. Math.Soc. 81 (1975), 313-329. MR 0367861 (51:4103)
  • 14. P. Goodey, W. Weil, Centrally symmetric convex bodies and the spherical Radon transforms, J. Diff. Geom. 35 (1992), 675-688. MR 1163454 (93g:44005)
  • 15. P. Goodey, V. Yaskin, M. Yaskina, Fourier transforms and the Funck-Hecke theorem in convex geometry, J. London Math. Soc. (2) 80 (2009), 388-404. MR 2545259
  • 16. I. S. Gradshteyn, I. M. Ryzhik, Tables of integrals, series and products, 7th edition, Academic Press, 2007. MR 2360010 (2008g:00005)
  • 17. H. Groemer, Geometric applications of Fourier series and spherical harmonics, Cambridge Univ. Press, New York, 1996. MR 1412143 (97j:52001)
  • 18. B. Guan, P. Guan, Convex hypersurfaces of prescribed curvatures, Ann. of Math. (2) 156 (2002), 655-673. MR 1933079 (2003i:53046)
  • 19. P. Guan, C. Lin, X. Ma, The Christoffel-Minkowski problem II. Weingarten curvature equations, Chinese Ann. Math. Ser. B 27 (2006), 595-614. MR 2273800 (2007k:35145)
  • 20. P. Guan, X. Ma, The Christoffel-Minkowski problem I. Convexity of solutions if a Hessian equation, Invent. Math. 151 (2003), 553-577. MR 1961338 (2004a:35071)
  • 21. P. Guan, X. Ma, Convex solutions of fully nonlinear elliptic equations in classical differential geometry. Geometric evolution equations, 115-127, Contemp. Math. 367 (2005). MR 2115755 (2006a:35085)
  • 22. P. Guan, X. Ma, F. Zhou, The Christoffel-Minkowski problem III. Existence and convexity of admissible solutions, Comm. Pure Appl. Math59 (2006), 1352-1376. MR 2237290 (2007m:35064)
  • 23. M. Kiderlen, Stability results for convex bodies in geometric tomography, Indiana Univ. Math. Jour. 57, No. 5 (2008), 1999-2038. MR 2463960 (2010c:52003)
  • 24. A. Koldobsky, Fourier Analysis in Convex Geometry, Mathematical Surveys and Monographs, American Mathematical Society, Providence RI, 2005. MR 2132704 (2006a:42007)
  • 25. E. Milman, Generalized intersection bodies, J. Funct. Anal. 240 (2006), 530-567. MR 2261694 (2007h:52007)
  • 26. H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges. Wiss. Göttingen (1897), 198-219. Gesammelte Abhandlungen, vol. II, Teubner, Leipzig, 1911, 103-121.
  • 27. H. Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), 447-495. Gesammelte Abhandlungen, vol. II, Teubner, Leipzig, 1911, 230-276. MR 1511220
  • 28. A. V. Pogorelov, The Minkowski Multidimensional Problem, Winston and Sons, Washington DC, 1978. MR 0478079 (57:17572)
  • 29. W. Rudin, Functional analysis, McGraw-Hill, New York, 1973. MR 0365062 (51:1315)
  • 30. R. Schneider, Das Christoffel-Problem für Polytope, Geom. Dedicata 6 (1977), 81-85. MR 0470865 (57:10609)
  • 31. R. Schneider, Convex Bodies: the Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993. MR 1216521 (94d:52007)
  • 32. W. Sheng, N. Trudinger, X. Wang, Convex hypersurfaces of prescribed Weingarten curvature, Comm. in Analysis and Geometry, 12 (2004), 213-232. MR 2074877 (2005f:53109)
  • 33. W. Weil, On surface area measures of convex bodies, Geom. Dedicata 9 (1980), 299-306. MR 585937 (81m:52014)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 52A20, 42B10, 33C55

Retrieve articles in all journals with MSC (2010): 52A20, 42B10, 33C55


Additional Information

Paul Goodey
Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019
Email: pgoodey@math.ou.edu

Vladyslav Yaskin
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: vladyaskin@math.ualberta.ca

Maryna Yaskina
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: myaskina@math.ualberta.ca

DOI: https://doi.org/10.1090/S0002-9947-2011-05267-0
Received by editor(s): October 27, 2009
Published electronically: July 26, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society