Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 

 

A Fourier transform approach to Christoffel's problem


Authors: Paul Goodey, Vladyslav Yaskin and Maryna Yaskina
Journal: Trans. Amer. Math. Soc. 363 (2011), 6351-6384
MSC (2010): Primary 52A20, 42B10, 33C55
Published electronically: July 26, 2011
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We use Fourier transform techniques to provide a new approach to Berg's solution of the Christoffel problem. This leads to an explicit description of Berg's spherical kernel and to new regularity properties of the associated integral transform.


References [Enhancements On Off] (What's this?)

  • 1. A. D. Aleksandrov, Über die Frage nach der Existenz eines Körpers bei dem die Summe der Hauptkrümmungsradien eine gegebene positive Funktion ist, welche die Bedingungen der Geschlossenheit genügt, Doklady Akad. Nauk 14 (1937), 59-60.
  • 2. A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, II. Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen (in Russian), Mat. Sbornik N.S. 2 (1937), 1205-1238.
  • 3. A. D. Aleksandrov, Zur Theorie der gemischten Volumina von konvexen Körpern, III. Die Erweiterung zweier Lehrsätze Minkowskis über die konvexen Polyeder auf beleibige konvexe Flächen (in Russian), Mat. Sbornik N.S. 3 (1938), 27-46.
  • 4. Christian Berg, Corps convexes et potentiels sphériques, Mat.-Fys. Medd. Danske Vid. Selsk. 37 (1969), no. 6, 64 pp. (1969) (French). MR 0254789
  • 5. Herbert Busemann, Convex surfaces, Interscience Tracts in Pure and Applied Mathematics, no. 6, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. MR 0105155
  • 6. Shiu Yuen Cheng and Shing Tung Yau, On the regularity of the solution of the 𝑛-dimensional Minkowski problem, Comm. Pure Appl. Math. 29 (1976), no. 5, 495–516. MR 0423267
  • 7. E. B. Christoffel, Über die Bestimmung der Gestalt einer krummen Oberfläche durch lokale Messungen auf derselben, J. für die Reine und Angewandte Math. 64 (1865), 193-209.
  • 8. W. Fenchel, B. Jessen, Mengenfunktionen und konvexe Körper, Danske Vid. Selskab. Mat.-fys. Medd. 16 (1938).
  • 9. W. J. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathematika 14 (1967), 1–13. MR 0217699
  • 10. William J. Firey, Christoffel’s problem for general convex bodies, Mathematika 15 (1968), 7–21. MR 0230259
  • 11. I. M. Gel′fand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1964 [1977]. Properties and operations; Translated from the Russian by Eugene Saletan. MR 0435831
  • 12. David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • 13. Herman Gluck, Manifolds with preassigned curvature—a survey, Bull. Amer. Math. Soc. 81 (1975), 313–329. MR 0367861, 10.1090/S0002-9904-1975-13740-2
  • 14. Paul Goodey and Wolfgang Weil, Centrally symmetric convex bodies and the spherical Radon transform, J. Differential Geom. 35 (1992), no. 3, 675–688. MR 1163454
  • 15. Paul Goodey, Vladyslav Yaskin, and Maryna Yaskina, Fourier transforms and the Funk-Hecke theorem in convex geometry, J. Lond. Math. Soc. (2) 80 (2009), no. 2, 388–404. MR 2545259, 10.1112/jlms/jdp035
  • 16. I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger; With one CD-ROM (Windows, Macintosh and UNIX). MR 2360010
  • 17. H. Groemer, Geometric applications of Fourier series and spherical harmonics, Encyclopedia of Mathematics and its Applications, vol. 61, Cambridge University Press, Cambridge, 1996. MR 1412143
  • 18. Bo Guan and Pengfei Guan, Convex hypersurfaces of prescribed curvatures, Ann. of Math. (2) 156 (2002), no. 2, 655–673. MR 1933079, 10.2307/3597202
  • 19. Pengfei Guan, Changshou Lin, and Xi’nan Ma, The Christoffel-Minkowski problem. II. Weingarten curvature equations, Chinese Ann. Math. Ser. B 27 (2006), no. 6, 595–614. MR 2273800, 10.1007/s11401-005-0575-0
  • 20. Pengfei Guan and Xi-Nan Ma, The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equation, Invent. Math. 151 (2003), no. 3, 553–577. MR 1961338, 10.1007/s00222-002-0259-2
  • 21. Pengfei Guan and Xi-Nan Ma, Convex solutions of fully nonlinear elliptic equations in classical differential geometry, Geometric evolution equations, Contemp. Math., vol. 367, Amer. Math. Soc., Providence, RI, 2005, pp. 115–127. MR 2115755, 10.1090/conm/367/06751
  • 22. Pengfei Guan, Xi-Nan Ma, and Feng Zhou, The Christofel-Minkowski problem. III. Existence and convexity of admissible solutions, Comm. Pure Appl. Math. 59 (2006), no. 9, 1352–1376. MR 2237290, 10.1002/cpa.20118
  • 23. Markus Kiderlen, Stability results for convex bodies in geometric tomography, Indiana Univ. Math. J. 57 (2008), no. 5, 1999–2038. MR 2463960, 10.1512/iumj.2008.57.3348
  • 24. Alexander Koldobsky, Fourier analysis in convex geometry, Mathematical Surveys and Monographs, vol. 116, American Mathematical Society, Providence, RI, 2005. MR 2132704
  • 25. Emanuel Milman, Generalized intersection bodies, J. Funct. Anal. 240 (2006), no. 2, 530–567. MR 2261694, 10.1016/j.jfa.2006.04.004
  • 26. H. Minkowski, Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges. Wiss. Göttingen (1897), 198-219. Gesammelte Abhandlungen, vol. II, Teubner, Leipzig, 1911, 103-121.
  • 27. Hermann Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), no. 4, 447–495 (German). MR 1511220, 10.1007/BF01445180
  • 28. Aleksey Vasil′yevich Pogorelov, The Minkowski multidimensional problem, V. H. Winston & Sons, Washington, D.C.; Halsted Press [John Wiley & Sons], New York-Toronto-London, 1978. Translated from the Russian by Vladimir Oliker; Introduction by Louis Nirenberg; Scripta Series in Mathematics. MR 0478079
  • 29. Walter Rudin, Functional analysis, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. MR 0365062
  • 30. Rolf Schneider, Das Christoffel-Problem für Polytope, Geometriae Dedicata 6 (1977), no. 1, 81–85 (German). MR 0470865
  • 31. Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521
  • 32. Weimin Sheng, Neil Trudinger, and Xu-Jia Wang, Convex hypersurfaces of prescribed Weingarten curvatures, Comm. Anal. Geom. 12 (2004), no. 1-2, 213–232. MR 2074877
  • 33. Wolfgang Weil, On surface area measures of convex bodies, Geom. Dedicata 9 (1980), no. 3, 299–306. MR 585937, 10.1007/BF00181175

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 52A20, 42B10, 33C55

Retrieve articles in all journals with MSC (2010): 52A20, 42B10, 33C55


Additional Information

Paul Goodey
Affiliation: Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019
Email: pgoodey@math.ou.edu

Vladyslav Yaskin
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: vladyaskin@math.ualberta.ca

Maryna Yaskina
Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
Email: myaskina@math.ualberta.ca

DOI: https://doi.org/10.1090/S0002-9947-2011-05267-0
Received by editor(s): October 27, 2009
Published electronically: July 26, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.