Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The spectrum of Schrödinger operators and Hodge Laplacians on conformally cusp manifolds


Authors: Sylvain Golénia and Sergiu Moroianu
Journal: Trans. Amer. Math. Soc. 364 (2012), 1-29
MSC (2000): Primary 58J40, 58Z05
DOI: https://doi.org/10.1090/S0002-9947-2011-05216-5
Published electronically: August 11, 2011
MathSciNet review: 2833575
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We describe the spectrum of the $ k$-form Laplacian on conformally cusp Riemannian manifolds. The essential spectrum is shown to vanish precisely when the $ k$ and $ k-1$ de Rham cohomology groups of the boundary vanish. We give Weyl-type asymptotics for the eigenvalue-counting function in the purely discrete case. In the other case we analyze the essential spectrum via positive commutator methods and establish a limiting absorption principle. This implies the absence of the singular spectrum for a wide class of metrics. We also exhibit a class of potentials $ V$ such that the Schrödinger operator has compact resolvent, although in most directions the potential $ V$ tends to $ -\infty$. We correct a statement from the literature regarding the essential spectrum of the Laplacian on forms on hyperbolic manifolds of finite volume, and we propose a conjecture about the existence of such manifolds in dimension 4 whose cusps are rational homology spheres.


References [Enhancements On Off] (What's this?)

  • 1. W. Amrein, A. Boutet de Monvel and V. Georgescu, $ C_{0}$-Groups, commutator methods and spectral theory of $ N$-body Hamiltonians, Birkhäuser, Basel-Boston-Berlin, 1996. MR 1388037 (97h:47001)
  • 2. F. Antoci, On the absolute spectrum of the Laplace-Beltrami operator for p-forms for a class of warped product metrics, Math. Nachr. 279, No. 16, 1749-1772 (2006). MR 2274831 (2008h:58054)
  • 3. -, On the spectrum of the Laplace-Beltrami operator for $ p$-forms for a class of warped product metrics, Adv. Math. 188 (2004), no. 2, 247-293. MR 2087228 (2005d:58052)
  • 4. R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Universitext, Springer-Verlag, Berlin, 1992. MR 1219310 (94e:57015)
  • 5. C. Bär, The Dirac operator on hyperbolic manifolds of finite volume, J. Differential Geom. 54 (2000), 439-488. MR 1823312 (2002c:58048)
  • 6. L. Bueler, The heat kernel weighted Hodge Laplacian on non-compact manifolds, Trans. Amer. Math. Soc., Volume 351, no. 2, 683-713 (1999). MR 1443866 (99d:58164)
  • 7. M. Braverman, O. Milatovic and M.  Shubin, Essential self-adjointness of Schrödinger-type operators on manifolds, J. Russ. Math. Surv. 57, No. 4, 641-692 (2002); transl. from Usp. Mat. Nauk 57, No. 4, 3-58 (2002). MR 1942115 (2004g:58021)
  • 8. G. Carron, $ L^2$-harmonic forms on non-compact Riemannian manifolds, Proc. Centre Math. Appl. Austral. Nat. Univ. 40, 49-59 (2002). MR 1953479 (2003j:58001)
  • 9. H. Donnelly and P. Li, Pure point spectrum and negative curvature for noncompact manifolds, Duke Math. J. 46 (1979), no. 3, 497-503. MR 544241 (80j:35075)
  • 10. R. Froese and P. D. Hislop, Spectral analysis of second-order elliptic operators on noncompact manifolds, Duke Math. J. 58 (1989), No. 1, 103-129. MR 1016416 (90k:58234)
  • 11. M. P.  Gaffney, Hilbert space methods in the theory of harmonic integrals, Trans. Amer. Math. Soc., Volume 78, 426-444. (1955) MR 0068888 (16:957a)
  • 12. V. Georgescu and C. Gérard, On the Virial Theorem in Quantum Mechanics, Commun. Math. Phys. 208, No.2, 275-281 (1999). MR 1729087 (2001b:47134)
  • 13. V. Georgescu, C. Gérard and J. Møller, Commutators, $ C_{0}$-semigroups and resolvent estimates, J. Funct. Anal. 216, No. 2, 303-361 (2004). MR 2095686 (2005h:47044)
  • 14. V. Georgescu and S. Golénia, Decay preserving operators and stability of the essential spectrum, J. Oper. Theory. 59 (2008), no. 1, 115-155. MR 2404467 (2009b:47020)
  • 15. S. Golénia and S. Moroianu, The spectrum of magnetic Schrödinger operators and $ k$-form Laplacians on conformally cusp manifolds, unpublished manuscript math.DG/0507443.
  • 16. -, Spectral analysis of magnetic Laplacians on conformally cusp manifolds, Ann. H. Poincaré 9 (2008), 131-179. MR 2389893 (2009b:58069)
  • 17. F-Z. Gong and F-Y. Wang, On Gromov's theorem and $ L^2$-Hodge decomposition, Int. J. Math. Math. Sci. 2004, No. 1-4, 25-44 (2004). MR 2038792 (2005c:58055)
  • 18. L. Guillopé, Introduction à l'invariant $ \eta$, Sémin. Théor. Spectrale Géom. 7, 103-114 (1989).
  • 19. -, Théorie spectrale de quelques variétés à bouts, Ann. Sci. Ecole Norm. Sup. 22, nr. 4 (1989), 137-160. MR 985859 (90g:58136)
  • 20. D. Häfner, Sur la théorie de la diffusion pour l'équation de Klein-Gordon dans la métrique de Kerr, Diss. Math. 421 (2003). MR 2031494 (2004m:58047)
  • 21. W. Hantzsche and H. Wendt, Dreidimensionale euklidische Raumformen, Math. Ann. 110 (1935), no. 1, 593-611. MR 1512956
  • 22. H. Kumura, Limiting absorption principle and absolute continuity of the Laplacian on a manifold having ends with various radial curvatures, preprint math/0606125.
  • 23. R. Lauter and V. Nistor, On spectra of geometric operators on open manifolds and differentiable groupoids, Electron. Res. Announc. Amer. Math. Soc. 7 (2001), 45-53. MR 1852899 (2002g:58023)
  • 24. M. Lesch and N. Peyerimhoff, On index formulas for manifolds with metric horns, Comm. Partial Diff. Equ. 23 (1998), 649-684. MR 1620597 (99d:58166)
  • 25. D. D. Long and A. W. Reid, On the geometric boundaries of hyperbolic $ 4$-manifolds, Geom. Topol. 4 (2000), 171-178. MR 1769269 (2001e:57037)
  • 26. J. Lott, On the spectrum of a finite-volume negatively-curved manifold, Amer. J. Math. 123 (2001), no. 2, 185-205. MR 1828220 (2002f:58054)
  • 27. R. Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differ. Geom. 28, No. 2, 309-339 (1988). MR 961517 (89i:58005)
  • 28. R. Mazzeo and R. Phillips, Hodge theory on hyperbolic manifolds, Duke Math. J. 60 (1990), no. 2, 509-559. MR 1047764 (91m:58006)
  • 29. R.B. Melrose, The eta invariant and families of pseudodifferential operators. Math. Res. Letters 2 (1995), 541-561. MR 1359962 (96h:58169)
  • 30. R. B. Melrose and V. Nistor, Homology of pseudodifferential operators I. Manifolds with boundary, unpublished manuscript, funct-an/9606005.
  • 31. S. Moroianu, K-Theory of suspended pseudo-differential operators, $ K$-Theory 28 (2003), 167-181. MR 1995875 (2005a:58041)
  • 32. -, Weyl laws on open manifolds, Math. Annalen 340 (2008), 1-21. MR 2349766 (2009a:58028)
  • 33. E. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys. 78 (1981) 391-408. MR 603501 (82c:47030)
  • 34. B. E. Nimershiem, All flat three-manifolds appear as cusps of hyperbolic four-manifolds, Topology Applications 90, no. 1-3 (1998), 109-133. MR 1648306 (99i:57029)
  • 35. V. Nistor, Pseudodifferential operators on non-compact manifolds and analysis on polyhedral domains, Spectral geometry of manifolds with boundary and decomposition of manifolds, 307-328, Contemp. Math., 366, Amer. Math. Soc., Providence, RI, 2005. MR 2114493 (2005k:58050)
  • 36. F. Pfäffle, The Dirac spectrum of Bieberbach manifolds, J. Geom. Phys. 35 (2000), no. 4, 367-385. MR 1780760 (2002b:58045)
  • 37. J. G. Ratcliffe and S. T. Tschantz, The volume spectrum of hyperbolic $ 4$-manifolds, Experiment. Math. 9 (2000), no. 1, 101-125. MR 1758804 (2001b:57048)
  • 38. M. Reed and B. Simon, Methods of modern mathematical physics II: Fourier analysis, self- adjointness, Academic Press, New York - San Francisco - London, 1975. MR 0493420 (58:12429b)
  • 39. B. Simon, Some quantum operators with discrete spectrum but classically continuous spectrum, Ann. Phys. 146 (1983), 209-220. MR 701264 (85d:35089)
  • 40. J. A. Wolf, Spaces of constant curvature, Publish or Perish, Inc., Houston, TX, 1984. MR 928600 (88k:53002)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 58J40, 58Z05

Retrieve articles in all journals with MSC (2000): 58J40, 58Z05


Additional Information

Sylvain Golénia
Affiliation: Mathematisches Institut der Universität Erlangen-Nürnberg, Bismarckstr. 1 1/2, 91054 Erlangen, Germany
Address at time of publication: Institut de Mathématiques de Bordeaux, Université Bordeaux 1, 351 cours de la Libération, F-33405 Talence cedex, France
Email: golenia@mi.uni-erlangen.de, Sylvain.Golenia@u-bordeaux1.fr

Sergiu Moroianu
Affiliation: Institutul de Matematică al Academiei Române, P.O. Box 1-764, RO-014700 Bucharest, Romania
Email: moroianu@alum.mit.edu

DOI: https://doi.org/10.1090/S0002-9947-2011-05216-5
Keywords: Finite volume hyperbolic manifolds, Hodge theory, Laplacian on forms, cusp pseudodifferential operators, purely discrete spectrum, absolutely continuous spectrum, Mourre estimate
Received by editor(s): December 8, 2008
Received by editor(s) in revised form: September 29, 2009
Published electronically: August 11, 2011
Additional Notes: The authors were partially supported by the contract MERG 006375, funded through the European Commission.
The second author was partially supported from the contracts 2-CEx06-11-18/2006 and CNCSIS-GR202/19.09.2006.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society