Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Simple vector bundles on plane degenerations of an elliptic curve


Authors: Lesya Bodnarchuk, Yuriy Drozd and Gert-Martin Greuel
Journal: Trans. Amer. Math. Soc. 364 (2012), 137-174
MSC (2000): Primary 16G60; Secondary 14H10, 14H60
DOI: https://doi.org/10.1090/S0002-9947-2011-05354-7
Published electronically: August 25, 2011
MathSciNet review: 2833580
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In 1957 Atiyah classified simple and indecomposable vector bundles on an elliptic curve. In this article we generalize his classification by describing the simple vector bundles on all reduced plane cubic curves. Our main result states that a simple vector bundle on such a curve is completely determined by its rank, multidegree and determinant. Our approach, based on the representation theory of boxes, also yields an explicit description of the corresponding universal families of simple vector bundles.


References [Enhancements On Off] (What's this?)

  • [AK79] Altman, A., Kleiman, S.: Compactifying of the Picard scheme II. Amer. J. Math. 101, 10-41 (1979). MR 527824 (81f:14025b)
  • [Ati57]  Atiyah, M.: Vector bundles over an elliptic curve. Proc. London Math. Soc., 7, 414-452 (1957). MR 0131423 (24:A1274)
  • [BBHM02] Bartocci, C., Bruzzo, U., Hernández Ruipérez, D., Muñoz Porras, J.: Relatively stable bundles over elliptic fibrations. Math. Nachr. 238, 23-36 (2002). MR 1900809 (2003m:14019)
  • [BPV84] Barth, W., Peters, C., Van de Ven, A., Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer-Verlag, Berlin, 1984. MR 749574 (86c:32026)
  • [BBDG] Bodnarchuk, L., Burban, I., Drozd, Yu., Greuel, G.-M.: Vector bundles and torsionfree sheaves on degenerations of elliptic curves, Global Aspects of Complex Geometry 83-128, (2006), arxiv: math.AG/16796. MR 2264108 (2008a:14048)
  • [BD03] Bodnarchuk, L., Drozd, Yu. A.: Stable vector bundles over cuspidal cubics, Central European Journal of Mathematics 4, 650-660, (2003). MR 2040656 (2005d:14047)
  • [BD09] Bodnarchuk, L., Drozd, Yu. A.: One class of wild but brick-tame matrix problems preprint MPIM2009-18, arXiv: math.RT /0903.4374v2.
  • [BB91] Butler, M.C.R., Burt, W.L.: Almost split sequences for bocses. Canad. Math. Soc. Conf. Proc. 11, 89-121 (1991). MR 1143847 (93d:16017)
  • [BD04] Burban, I., Drozd, Yu.: Coherent sheaves on rational curves with simple double points and transversal intersections. Duke Math. J. 121, no. 2, 189-229 (2004). MR 2034641 (2004m:14024)
  • [BD09] Burban, I., Drozd, Yu.: Tilting on non-commutative rational projective curves, arXiv:0905.1231 (to appear in Mat. Annalen).
  • [BDG01] Burban, I., Drozd, Yu., Greuel, G.-M.: Vector bundles on singular projective curves. Ciliberto (ed.) et al., Applications of algebraic geometry to coding theory, physics and computation (Eilat, Israel, 2001), Dordrecht: Kluwer Academic Publishers, NATO Sci. Ser. II, Math. Phys. Chem. 36, 1-15 (2001). MR 1866891 (2002k:14054)
  • [BK05] Burban, I., Kreußler, B.: Fourier-Mukai transforms and semi-stable sheaves on nodal Weierstraß cubics. J. Reine Angew. Math., 584, 45-82 (2005). MR 2155085 (2006d:14016)
  • [BK06] Burban, I., Kreußler, B.: Derived categories of irreducible projective curves of arithmetic genus one. Compositio Mathematica, 142, 1231-1262 (2006). MR 2264663 (2007h:18016)
  • [BK4] Burban, I., Kreußler, B.: Vector bundles on cubic curves and Yang-Baxter equations. arxiv: math.AG/0708.1685v2.
  • [Bho92] Bhosle, U.N.: Generalised parabolic bundles and applications to torsionfree sheaves on nodal curves, Ark. Mat 30, 187-215 (1992). MR 1289750 (95g:14022)
  • [Bho96] Bhosle, U.N.: Generalized parabolic bundles and applications II. Proc. Indian Acad. Sci. (Math. Sci.) 106, N4 403-420 (1996). MR 1425615 (2000i:14048)
  • [Bho99] Bhosle, U.N.: Moduli of vector bundles on curves with many components. Proceedings of the London Mathematical Society, Cambridge University Press 79, 81-106 (1999). MR 1687547 (2000c:14043)
  • [Bod07] Bodnarchuk, L.: Simple vector bundles on degenerations of elliptic curves of type II, III and IV. Ph.D. thesis, Kaiserslautern (2007) http://kluedo.ub.uni-kl.de/volltexte/2008/2281/.
  • [Bon92] Bondarenko, V. M.: Representations of bundles of semi-chains and their applications. St. Petersburg Math. J., 3, 973-996 (1992). MR 1186235 (94h:16020)
  • [Bur03] Burban, I.: Stable vector bundles on a rational curve with one simple node. Ukrainian Mathematical Journal 5, (2003).
  • [CB88] Crawley-Boevey, W.: On tame algebras and bocses. Proc. London Math. Soc. 56, 451-483 (1988). MR 931510 (89c:16028)
  • [CB89] Crawley-Boevey, W.: Functorial filtrations II: clans and the Gelfand problem. J. London Math. Soc., 40, 9-30 (1989). MR 1028911 (91i:16025)
  • [CB90] Crawley-Boevey, W.: Matrix problems and Drozd's theorem. Topics in Algebra, Balcerzyk, S., et al., eds., Banach Center publications, vol. 26 part 1 (PWN-Polish Scientific Publishers, Warsaw), 199-222 (1990). MR 1171233 (93g:16021)
  • [DG01] Drozd, Yu., Greuel, G.-M.: Tame and Wild Projective Curves and Classification of Vector Bundles. Journal of Algebra 246, 1-54 (2001). MR 1872612 (2002j:14039)
  • [Dro79] Drozd, Yu.: Tame and wild matrix problems. Representations and Quadratic Forms. Institute of Mathematiks, Kiev, 39-74 (1979) (English translation: Amer. Math. Soc. Transl. 128, 31-55 (1986)). MR 600111 (82m:16028)
  • [Dro92] Drozd, Yu.: Matrix problems, small reduction and representations of a class of mixed Lie groups. Representations of Algebras and Related Topics. Cambridge Univ. Press, 225-249 (1992). MR 1211482 (94d:22016)
  • [Dro01] Drozd, Yu.: Reduction Algorithm and representations of boxes and algebras. C.R. Math. Pep. Acad. Sci. Canada, 23, 97-125 (2001). MR 1869054 (2002j:16012)
  • [Dro05] Drozd, Yu.: Semi-continuity for derived categories. Algebras and Representation Theory, 8 239-248 (2005). MR 2162284 (2006f:16022)
  • [FMW99] Friedman, R., Morgan, J., Witten, E.: Vector bundles over elliptic fibrations. J. Algebr. Geom. 8, 279-401 (1999). MR 1675162 (2000b:14053)
  • [HLSP] Hernández Ruipérez, D., López Martin, A.C., Sánchez Gómez, D.S., Prieto, C.T.: Moduli spaces of semistable sheaves on singular genus one curves. Int. Math. Res. Notices 11, 4428-4462 (2009), DOI 10.1093/imrn/rnp094, arXiv:math.AG/0806.2034.
  • [GP68] Gelfand, I., Ponomarev, V.: Indecomposable representations of the Lorentz group. Uspehi Mat. Nauk 23, no. 2 140, 3-60 (1968). MR 0229751 (37:5325)
  • [KL86] Klinger, L., Levy, L.S.: Sweeping-similarity of matrices. Linear algebra and its applications 75, 67-104 (1986). MR 825400 (87k:15015)
  • [KR75] Kleiner, M.M., Roiter, A.V.: Representations of differential graded categories. Representations of Algebras. Proc.Conf. Ottawa (1974) (eds.) V. Dlab and P.Gabriel. Lecture Notes in Math. 488, Springer, Berlin, 316-339 (1975). MR 0435145 (55:8106)
  • [Kri77] Krichever, I. M.: Integration of nonlinear equations by the methods of algebraic geometry. (Russian) Funkcional. Anal. i Prilozhen. 11, no. 1, 15-31 (1977). MR 0494262 (58:13168)
  • [LM93] Lenzing, H. and Meltzer, H.: Sheaves on a weighted projective line of genus one, and representations of a tubular algebra. Can. Math. Soc. Conf. Proc. 14, 313- 337 (1993).
  • [Lo05] López-Martin, A.-C.: Simpson Jacobians of reducible curves, J. reine angew. Math. 582, 1-39 (2005). MR 2139709 (2006d:14032)
  • [Lo06] López-Martin, A.-C.: Relative Jacobians of elliptic fibrations with reducible fibers. Journal of Geometry and Physics 56, 375-385 (2006). MR 2171891 (2006g:14020)
  • [Ma78] Manin, Yu. I.: Matrix solitons and vector bundles over curves with singularities. (Russian) Funk. Anal. i Prilozhen. 12, no. 4, 53-63 (1978). MR 515629 (80g:35114)
  • [Mu94] Mulase, M.: Algebraic theory of the KP equations. Perspectives in Mathematical Physics, Editors R. Penner and S.-T. Yau, International Press Company, 157-223 (1994). MR 1314667 (96c:58088)
  • [NR69] Nazarova, L.A., Roiter, A.V.: Finitely generated modules over a dyad of two local Dedekind rings, and finite groups with an Abelian normal divisor of index $ p$. Math. USSR Izv., 3, 65-86 (1969); translation from Izv. Akad. Nauk SSSR, Ser. Mat., 33, 65-89 (1969).
  • [New78] Newstead, P.: Introduction to Moduli Problems and Orbit Spaces. T.I.F.R. Lecture Notes 51 (1978). MR 546290 (81k:14002)
  • [Ovs97] Ovsienko, S.: Bimodule and matrix problems. Euroconference Essen Computational Methods for Representations of Groups and Algebras, April 1 - 5, (1997).
  • [Pol02] Polishchuk, A.: Classical Yang-Baxter equation and the $ A\sb \infty$-constraint. Adv. Math. 168, no. 1, 56-95 (2002). MR 1907318 (2003d:16051)
  • [Pol07] Polishchuk, A.: Massey products on cycles of projective lines and trigonometric solutions of the Yang-Baxter equations. arXiv:math/0612761v3.
  • [Ro79] Roiter A. V.: Matrix problems and representations of BOCSs. Representation Theory I, Proc. Conf. Ottawa 1979, Dlab V. and Gabriel P. (eds.), Lecture Notes in Math. 831, 288-324, Springer, Berlin (1980). MR 607144 (83e:16034)
  • [Ro86] Roiter A. V.: Matrix problems and representations of BOCSs. Representations and Quadratic Forms. Institute of Mathematiks, Kiev, 39-74 (1979) (English translation: Amer. Math. Soc. Transl. 128, 31-55 (1986)). MR 600110 (83b:16027)
  • [ST01] Seidel, P., Thomas, R.P.: Braid group actions on derived categories of coherent sheaves. Duke Math. J., 108, no. 1, 37-108 (2001). MR 1831820 (2002e:14030)
  • [Ses82] Seshadri, C.S.: Fibrés vectoriels sur les courbes algébriques. Astérisque, 96, Société Mathématique de France, Paris (1982). MR 699278 (85b:14023)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 16G60, 14H10, 14H60

Retrieve articles in all journals with MSC (2000): 16G60, 14H10, 14H60


Additional Information

Lesya Bodnarchuk
Affiliation: Max-Planck-Institut für Mathematik, Bonn, Germany
Email: lesyabod@mpim-bonn.mpg.de

Yuriy Drozd
Affiliation: Institute of Mathematics, National Academy of Sciences of Ukraine, Kiev, Ukraine
Email: drozd@imath.kiev.ua

Gert-Martin Greuel
Affiliation: Fachbereich Mathematik, University of Kaiserslautern, Kaiserslautern, Germany
Email: greuel@mathematik.uni-kl.de

DOI: https://doi.org/10.1090/S0002-9947-2011-05354-7
Keywords: Simple vector bundles and their moduli, degeneration of an elliptic curve, tame and wild, small reduction.
Received by editor(s): July 28, 2009
Received by editor(s) in revised form: March 3, 2010
Published electronically: August 25, 2011
Additional Notes: We express our sincere thanks to Professor Serge Ovsienko for fruitful discussions and helpful advice. The first named author would like to thank Institut des Hautes Études Scientifiques and the Mathematisches Forschungsinstitut Oberwolfach, where she stayed during the period that this paper was written.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society