Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Transfer maps in Hochschild (co)homology and applications to stable and derived invariants and to the Auslander-Reiten conjecture


Authors: Steffen Koenig, Yuming Liu and Guodong Zhou
Journal: Trans. Amer. Math. Soc. 364 (2012), 195-232
MSC (2010): Primary 16G10, 16E40; Secondary 20C20
DOI: https://doi.org/10.1090/S0002-9947-2011-05358-4
Published electronically: August 3, 2011
MathSciNet review: 2833582
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Derived equivalences and stable equivalences of Morita type, and new (candidate) invariants thereof, between symmetric algebras will be investigated, using transfer maps as a tool. Close relationships will be established between the new invariants and the validity of the Auslander-Reiten conjecture, which states the invariance of the number of non-projective simple modules under stable equivalence. More precisely, the validity of this conjecture for a given pair of algebras, which are stably equivalent of Morita type, will be characterized in terms of data refining Hochschild homology (via Külshammer ideals) being invariant and also in terms of cyclic homology being invariant. Thus, validity of the Auslander-Reiten conjecture implies a whole set of ring theoretic and cohomological data to be invariant under stable equivalence of Morita type, and hence also under derived equivalence. We shall also prove that the Batalin-Vilkovisky algebra structure of Hochschild cohomology for symmetric algebras is preserved by derived equivalence. The main tools to be developed and used are transfer maps and their properties, in particular a crucial compatibility condition between transfer maps in Hochschild homology and Hochschild cohomology via the duality between them.


References [Enhancements On Off] (What's this?)

  • 1. F. W. Anderson and K. R. Fuller, Rings and categories of modules. Graduate Texts in Mathematics, Vol. 13. Springer-Verlag, New York-Heidelberg, 1974. MR 0417223 (54:5281)
  • 2. M. Auslander, I. Reiten and S. O. Smalø, Representation theory of Artin algebras. Cambridge University Press, 1995. MR 1314422 (96c:16015)
  • 3. C. Bessenrodt, T. Holm and A. Zimmermann, Generalized Reynolds ideals for non-symmetric algebras. J. Algebra 312 (2007), 985-994. MR 2333196 (2008e:16001)
  • 4. S. Bouc, Bimodules, trace généralisée, et transfers en homologie de Hochschild. Preprint, 1997. Available on http://people.math.jussieu.fr/ $ \tilde{\phantom{x}}$bouc/
  • 5. T. Breuer, L. Héthelyi, E. Horváth. B. Külshammer and J. Murray, Cartan invariants and central ideals of group algebras, J. Algebra (3) 296 (2006), 177-195. MR 2192603 (2006m:20016)
  • 6. M. Broué, Isométries parfaites, types de blocs, catégories dérivées. Astérisque 181-182 (1990), 61-92. MR 1051243 (91i:20006)
  • 7. M. Broué, Equivalences of blocks of group algebras. In: Finite dimensional algebras and related topics. V. Dlab and L. L. Scott (eds.), Kluwer, 1994, 1-26. MR 1308978 (97c:20004)
  • 8. D. Dugger and B. Shipley, $ K$-theory and derived equivalences. Duke Math. J. 124 (2004), no. 3, 587-617. MR 2085176 (2005e:19005)
  • 9. A. S. Dugas and R. Martinez-Villa, A note on stable equivalences of Morita type. J. Pure Appl. Algebra 208 (2007), no. 2, 421-433. MR 2277684 (2007k:16012)
  • 10. C. H. Eu and T. Schedler, Calabi-Yau Frobenius algebras. J. Algebra 321 (2009), no. 3, 774-815. MR 2488552 (2009m:16019)
  • 11. M. Gerstenhaber, The cohomology structure of an associative ring. Ann. of Math. (2) 78 (1963) 267-288. MR 0161898 (28:5102)
  • 12. D. Happel, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. 62 (1987), 339-389. MR 910167 (89c:16029)
  • 13. D. Happel, Triangulated categories in the representation theory of finite dimensional algebras, LMS Lecture Note Series 119, Cambridge University Press, 1988. MR 935124 (89e:16035)
  • 14. C. Kassel, Homology and cohomology of associative algebras - A concise introduction to cyclic homology, Notes of a course given in the Advanced School on Non-commutative Geometry at ICTP, Trieste in August 2004. Available at http://www-irma.u-strasbg.fr/~kassel/pubICTP04.html
  • 15. B. Keller, Deriving DG categories. Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63-102. MR 1258406 (95e:18010)
  • 16. B. Keller, Invariance and localization for cyclic homology of DG algebras. J. Pure Appl. Algebra 123 (1998), 223-273. MR 1492902 (99c:16009)
  • 17. S. König and A. Zimmermann, Derived equivalences for group rings. Lecture Notes in Mathematics 1685, Springer Verlag, Berlin-Heidelberg, 1998. MR 1649837 (2000g:16018)
  • 18. B. Külshammer, Bemerkungen über die Gruppenalgebra als symmetrische Algebra I, II, III, IV, J. Algebra 72 (1981), 1-7; J. Algebra 75 (1982), 59-69; J. Algebra 88 (1984), 279-291; J. Algebra 93 (1985), 310-323.
  • 19. B. Külshammer, Group-theoretical descriptions of ring theoretical invariants of group algebras. Progress in Math. 95 (1991), 425-441. MR 1112173 (92d:16037)
  • 20. M. Linckelmann, Transfer in Hochschild cohomology of blocks of finite groups. Algebras and Representation Theory 2 (1999), 107-135. MR 1702272 (2000h:20024)
  • 21. Y. M. Liu, On stable equivalences induced by exact functors. Proc. Amer. Math. Soc. 134 (2006), 1605-1613. MR 2204270 (2006k:16027)
  • 22. Y. M. Liu, Summands of stable equivalences of Morita type. Comm. in Algebra 36(10) (2008), 3778-3782. MR 2458406 (2009m:16028)
  • 23. Y. M. Liu and C. C. Xi, Constructions of stable equivalences of Morita type for finite dimensional algebras II. Math. Z. 251 (2005), 21-39. MR 2176462 (2007f:16029)
  • 24. Y. M. Liu, G. Zhou and A. Zimmermann Higman ideal, stable Hochschild homology and Auslander-Reiten conjecture, to appear in Math. Zeit., available at http://www.mathinfo.u-picardie.fr/alex/alexpapers.html.
  • 25. Jean-Louis Loday, Cyclic homology. Appendix E by Mara O. Ronco. Second edition. Chapter 13 by the author in collaboration with Teimuraz Pirashvili. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], (1998) 301. MR 1600246 (98h:16014)
  • 26. L. Menichi, Batalin-Vilkovisky algebras and cyclic cohomology of Hopf algebras. $ K$-Theory 32 (2004), no. 3, 231-251. MR 2114167 (2006c:16018)
  • 27. Z. Pogorzały, Invariance of Hochschild cohomology algebras under stable equivalences of Morita type. J. Math. Soc. Japan 53 (2001), no. 4, 913-918. MR 1852888 (2002m:16007)
  • 28. J. Rickard, Morita theory for derived categories, J. London Math. Soc.  39 (1989), 436-456. MR 1002456 (91b:18012)
  • 29. J. Rickard, Derived categories and stable equivalence. J. Pure Appl. Algebra 61(3) (1989), 303-317. MR 1027750 (91a:16004)
  • 30. J. Rickard, Derived equivalences as derived functors. J. London Math. Soc. 43 (1991), 37-48. MR 1099084 (92b:16043)
  • 31. J. Rickard, Some recent advances in modular representation theory. Algebras and modules, I (Trondheim, 1996), 157-178, CMS Conf. Proc., 23, Amer. Math. Soc., Providence, RI, 1998. MR 1648606 (99h:20011)
  • 32. J. J. Rotman, An introduction to homological algebra. Pure and Applied Mathematics, 85. Academic Press, Inc. Harcourt Brace Jovanovich, Publishers, New York-London, 1979. MR 538169 (80k:18001)
  • 33. R. W. Thomason and T. F. Trobaugh, Higher algebraic $ K$-theory of schemes and of derived categories. In:The Grothendieck Festschrift (a collection of papers to honor Grothendieck's 60th birthday) vol. 3, Birkhauser, 1990, 247-435. MR 1106918 (92f:19001)
  • 34. T. Tradler, The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products. Ann. Inst. Fourier (Grenoble) 58 (2008), no. 7, 2351-2379. MR 2498354 (2010a:16020)
  • 35. A. Zimmermann, Invariance of generalized Reynolds ideals under derived equivalences. Mathematical Proceedings of the Royal Irish Academy 107A(1) (2007), 1-9. MR 2289795 (2008a:16010)
  • 36. A. Zimmermann, Fine Hochschild invariants of derived categories for symmetric algebras, J. Algebra  308 (2007) 350-367. MR 2290926 (2007k:16018)
  • 37. A. Zimmermann, Hochschild homology invariants of Külshammer type of derived categories, preprint (2007) available at http://www.mathinfo.u-picardie.fr/alex/alexpapers.html. MR 2290926 (2007k:16018)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16G10, 16E40, 20C20

Retrieve articles in all journals with MSC (2010): 16G10, 16E40, 20C20


Additional Information

Steffen Koenig
Affiliation: Mathematisches Institut, Universität zu Köln, Weyertal 86-90, D-50931 Köln, Germany
Address at time of publication: Institut für Algebra und Zahlentheorie, Universtät Stuttgart, Pfaffenwaldring 57, D-70569, Stuttgart, Germany
Email: skoenig@mi.uni-koeln.de, skoenig@mathmatik.uni-stuttgart.de

Yuming Liu
Affiliation: School of Mathematical Sciences, Beijing Normal University, Beijing 100875, People’s Republic of China
Email: ymliu@bnu.edu.cn

Guodong Zhou
Affiliation: Institut für Mathematik, Universität Paderborn, 33098 Paderborn, Germany
Address at time of publication: Ecole Polytechnique Fédérale de Lausanne, SB-MATHGEOM-CTG, Lausanne 1015, Switzerland
Email: gzhou@math.uni-paderborn.de, guodong.zhou@epfl.ch

DOI: https://doi.org/10.1090/S0002-9947-2011-05358-4
Keywords: Auslander–Reiten conjecture, derived equivalence, Hochschild (co)homology, stable equivalence of Morita type, transfer map.
Received by editor(s): January 29, 2010
Received by editor(s) in revised form: April 1, 2010
Published electronically: August 3, 2011
Additional Notes: The second author was supported by Marie Curie Fellowship IIF and by SRF for ROCS, SEM
The third author benefited from financial support via a postdoctoral fellowship from the network “Representation theory of algebras and algebraic Lie theory” and the DAAD. This research work was mainly done while the last two authors visited the University of Köln.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society