Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Newton polygons of higher order in algebraic number theory


Authors: Jordi Guàrdia, Jesús Montes and Enric Nart
Journal: Trans. Amer. Math. Soc. 364 (2012), 361-416
MSC (2010): Primary 11S15; Secondary 11R04, 11R29, 11Y40
DOI: https://doi.org/10.1090/S0002-9947-2011-05442-5
Published electronically: May 18, 2011
MathSciNet review: 2833586
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop a theory of arithmetic Newton polygons of higher order that provides the factorization of a separable polynomial over a $ p$-adic field, together with relevant arithmetic information about the fields generated by the irreducible factors. This carries out a program suggested by Ø. Ore. As an application, we obtain fast algorithms to compute discriminants, prime ideal decomposition and integral bases of number fields.


References [Enhancements On Off] (What's this?)

  • [Bau07] M. Bauer, Zur allgemeinen Theorie der algebraischen Grössen, Journal für die reine und angewandte Mathematik 132(1907), pp. 21-32.
  • [Ded78] R. Dedekind, Über den Zusammenhang zwischen der Theorie der Ideale und der Theorie der höheren Kongruenzen, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 23(1878), pp. 1-23.
  • [Gua97] J. Guàrdia, Geometria aritmètica en una família de corbes de gènere tres, Tesi Doctoral, Universitat de Barcelona 1997.
  • [GMN08] J. Guàrdia, J. Montes, E. Nart, Higher Newton polygons in the computation of discriminants and prime ideal decomposition in number fields, arXiv:0807.4065v2[math.NT].
  • [GMN09] J. Guàrdia, J. Montes, E. Nart, Higher Newton polygons and integral bases, arXiv: 0902.3428v1[math.NT].
  • [Mon99] J. Montes, Polígonos de Newton de orden superior y aplicaciones aritméticas, Tesi Doctoral, Universitat de Barcelona, 1999.
  • [McL36] S. MacLane, A construction for absolute values in polynomial rings, Transactions of the American Mathematical Society, 40(1936), pp. 363-395. MR 1501879
  • [McL36b] S. MacLane, A construction for prime ideals as absolute values of an algebraic field, Duke Mathematical Journal 2(1936), pp. 492-510. MR 1545943
  • [Ore23] Ø. Ore, Zur Theorie der algebraischen Körper, Acta Mathematica 44(1923), pp. 219-314. MR 1555187
  • [Ore24] Ø. Ore, Weitere Untersuchungen zur Theorie der algebraischen Körper, Acta Mathematica 45(1924-25), pp. 145-160.
  • [Ore25] Ø. Ore, Bestimmung der Diskriminanten algebraischer Körper, Acta Mathematica 45(1925), pp. 303-344. MR 1555198
  • [Ore26] Ø. Ore, Über den Zusammenhang zwischen den definierenden Gleichungen und der Idealtheorie in algebraischen Körpern, Mathematische Annalen 96(1926), pp. 313-352.
  • [Ore28] Ø. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper, Mathematische Annalen 99(1928), pp. 84-117. MR 1512440

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11S15, 11R04, 11R29, 11Y40

Retrieve articles in all journals with MSC (2010): 11S15, 11R04, 11R29, 11Y40


Additional Information

Jordi Guàrdia
Affiliation: Departament de Matemàtica Aplicada IV, Escola Politècnica Superior d’Enginyera de Vilanova i la Geltrú, Av. Víctor Balaguer s/n. E-08800 Vilanova i la Geltrú, Catalonia, Spain
Email: guardia@ma4.upc.edu

Jesús Montes
Affiliation: Departament de Ciències Econòmiques i Socials, Facultat de Ciències Socials, Universitat Abat Oliba CEU, Bellesguard 30, E-08022 Barcelona, Catalonia, Spain
Email: montes3@uao.es

Enric Nart
Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, E-08193 Bellaterra, Barcelona, Catalonia, Spain
Email: nart@mat.uab.cat

DOI: https://doi.org/10.1090/S0002-9947-2011-05442-5
Keywords: Newton polygon, local field, $p$-adic factorization, number field, prime ideal decomposition, discriminant, integral basis
Received by editor(s): October 31, 2008
Received by editor(s) in revised form: June 15, 2010
Published electronically: May 18, 2011
Additional Notes: This work was partially supported by MTM2009-13060-C02-02 and MTM2009-10359 from the Spanish MEC
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society