Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Tangent algebras


Authors: Aron Simis, Bernd Ulrich and Wolmer V. Vasconcelos
Journal: Trans. Amer. Math. Soc. 364 (2012), 571-594
MSC (2010): Primary 13A30, 13N05; Secondary 13B22, 14F10
DOI: https://doi.org/10.1090/S0002-9947-2011-05161-5
Published electronically: September 14, 2011
MathSciNet review: 2846344
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: One studies the Zariski tangent cone $ T_X\stackrel{\pi}{\longrightarrow} X$ to an affine variety $ X$ and the closure $ \overline{T}_X$ of $ \pi^{-1}(\textrm{Reg}(X))$ in $ T_X$. One focuses on the comparison between $ T_X$ and $ \overline{T}_X$, giving sufficient conditions on $ X$ in order that $ T_X=\overline{T}_X$. One considers, in particular, the question of when this equality takes place in the presence of the reducedness of the Zariski tangent cone. Another problem considered here is to understand the impact of the Cohen-Macaulayness or normality of $ \overline{T}_X$ on the local structure of $ X$.


References [Enhancements On Off] (What's this?)

  • 1. L. Avramov, Complete intersections and symmetric algebras, J. Algebra 73 (1981), 248-263. MR 641643 (83e:13024)
  • 2. L. Avramov and J. Herzog, The Koszul algebra of a codimension $ 2$ embedding, Math. Z. 175 (1980), 249-260. MR 602637 (82g:13011)
  • 3. R. Berger, Differentialmoduln eindimensionaler lokaler Ringe, Math. Z. 81 (1963), 326-354. MR 0152546 (27:2524)
  • 4. J. Brennan, M. V. Pinto and W. V. Vasconcelos, The Jacobian module of a Lie algebra, Trans. Amer. Math. Soc. 321 (1990), 183-196. MR 958883 (90m:13023)
  • 5. L. Burch, On ideals of finite homological dimension in local rings, Math. Proc. Cambridge Philos. Soc. 64 (1968), 941-948. MR 0229634 (37:5208)
  • 6. A. Corso, C. Polini and B. Ulrich, Core of projective dimension one modules, Manuscripta Math. 111 (2003), 427-433. MR 2002819 (2004h:13006)
  • 7. S. Goto and F. Hayasaka, Finite homological dimension and primes associated to integrally closed ideals, Proc. Amer. Math. Soc. 130 (2002), 3159-3164. MR 1912992 (2003g:13014)
  • 8. J. Herzog, Ein Cohen-Macaulay Kriterium mit Anwendungen auf den Konormalenmodul und den Differentialmodul, Math. Z. 163 (1978), 149-162. MR 512469 (80a:13025)
  • 9. J. Herzog, Deformationen von Cohen-Macaulay Algebren, J. Reine Angew. Math. 318 (1980), 83-105. MR 579384 (81m:13012)
  • 10. J. Herzog, A. Simis and W. V. Vasconcelos, Koszul homology and blowing-up rings, in Commutative Algebra, Lecture Notes in Pure and Applied Math. 84, Marcel-Dekker, New York, 1983, 79-169. MR 686942 (84k:13015)
  • 11. J. Herzog, A. Simis and W. V. Vasconcelos, On the arithmetic and homology of algebras of linear type, Trans. Amer. Math. Soc. 283 (1984), 661-683. MR 737891 (86a:13015)
  • 12. J. Hong, S. Noh and W. V. Vasconcelos, Integrally closed modules and their divisors, Comm. Algebra 33 (2005), 4719-4733. MR 2188337 (2007d:13011)
  • 13. C. Huneke, On the symmetric algebra of a module, J. Algebra 69 (1981), 113-119. MR 613861 (82d:13016)
  • 14. C. Huneke, A. Simis and W. V. Vasconcelos, Reduced normal cones are domains, Contemp. Math. 88 (1989), 95-101. MR 999985 (90c:13010)
  • 15. M. Johnson, Depth of symmetric algebras of certain ideals, Proc. Amer. Math. Soc. 129 (2001), 1581-1585. MR 1814083 (2002b:13006)
  • 16. J. Lipman, On the Jacobian ideal of the module of differentials, Proc. Amer. Math. Soc. 21 (1969), 422-426. MR 0237511 (38:5793)
  • 17. P. Roberts, An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's Fourteenth Problem, J. Algebra 132 (1990), 461-473. MR 1061491 (91j:13006)
  • 18. G. Scheja and U. Storch, Über differentielle Abhängigkeit bei Idealen analytischer Algebren, Math. Z. 114 (1970), 101-112. MR 0263808 (41:8408)
  • 19. A. Simis, Remarkable Graded Algebras in Algebraic Geometry, XII ELAM, IMCA, Lima, Peru, 1999. MR 2007333
  • 20. A. Simis, Two differential themes in characteristic zero, Contemp. Math. 324 (2003), 195-204. MR 1986124
  • 21. A. Simis, K. Smith and B. Ulrich, An algebraic proof of Zak's inequality for the dimension of the Gauss image, Math. Z. 241 (2002), 871-881. MR 1942243 (2004a:13002)
  • 22. A. Simis, B. Ulrich and W. V. Vasconcelos, Tangent star cones, J. Reine Angew. Math. 483 (1997), 23-59. MR 1431841 (97m:14001)
  • 23. A. Simis, B. Ulrich and W. V. Vasconcelos, Rees algebras of modules, Proc. London Math. Soc. 87 (2003), 610-646. MR 2005877 (2004j:13005)
  • 24. A. Simis and W. V. Vasconcelos, On the dimension and integrality of symmetric algebras, Math. Z. 177 (1981), 341-358. MR 618200 (82i:13017)
  • 25. A. Simis and W. V. Vasconcelos, Krull dimension and integrality of symmetric algebras, Manuscripta Math. 61 (1988), 63-78. MR 939141 (89e:13011)
  • 26. I. Swanson and C. Huneke, Integral Closure of Ideals, Rings, and Modules, London Math. Soc. Lecture Note Series 336, Cambridge University Press, Cambridge, 2006. MR 2266432 (2008m:13013)
  • 27. W. V. Vasconcelos, Ideals generated by $ R$-sequences, J. Algebra 6 (1967), 309-316. MR 0213345 (35:4209)
  • 28. W. V. Vasconcelos, Arithmetic of Blowup Algebras, London Math. Soc. Lecture Note Series 195, Cambridge University Press, Cambridge, 1994. MR 1275840 (95g:13005)
  • 29. W. V. Vasconcelos, Integral Closure, Springer Monographs in Mathematics, Springer-Verlag, Berlin, Heidelberg, New York, 2005. MR 2153889 (2006m:13007)
  • 30. W. V. Vasconcelos and R. Villarreal, On Gorenstein ideals of codimension four, Proc. Amer. Math. Soc. 98 (1986), 205-210. MR 854019 (87k:13041)
  • 31. J. Weyman, Resolutions of the exterior and symmetric powers of a module, J. Algebra 58 (1979), 333-341. MR 540642 (80i:13005)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 13A30, 13N05, 13B22, 14F10

Retrieve articles in all journals with MSC (2010): 13A30, 13N05, 13B22, 14F10


Additional Information

Aron Simis
Affiliation: Departamento de Matemática, Universidade Federal de Pernambuco, 50740-540 Recife, PE, Brazil
Email: aron@dmat.ufpe.br

Bernd Ulrich
Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395
Email: ulrich@math.purdue.edu

Wolmer V. Vasconcelos
Affiliation: Department of Mathematics, Rutgers University, 110 Frelinghuysen Road, Piscataway, New Jersey 08854-8019
Email: vasconce@math.rutgers.edu

DOI: https://doi.org/10.1090/S0002-9947-2011-05161-5
Received by editor(s): November 25, 2007
Received by editor(s) in revised form: June 18, 2009
Published electronically: September 14, 2011
Additional Notes: The first author was partially supported by CNPq, Brazil
The second author was partially supported by the NSF, USA
The third author was partially supported by the NSF, USA
Article copyright: © Copyright 2011 American Mathematical Society

American Mathematical Society