Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

Request Permissions   Purchase Content 
 

 

The Weber-Seifert dodecahedral space is non-Haken


Authors: Benjamin A. Burton, J. Hyam Rubinstein and Stephan Tillmann
Journal: Trans. Amer. Math. Soc. 364 (2012), 911-932
MSC (2010): Primary 57N10
Published electronically: October 5, 2011
MathSciNet review: 2846358
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we settle Thurston's old question of whether the Weber-Seifert dodecahedral space is non-Haken, a problem that has been a benchmark for progress in computational 3-manifold topology over recent decades. We resolve this question by combining recent significant advances in normal surface enumeration, new heuristic pruning techniques, and a new theoretical test that extends the seminal work of Jaco and Oertel.


References [Enhancements On Off] (What's this?)

  • 1. Joan S. Birman, Problem list: Nonsufficiently large $ 3$-manifolds, Notices Amer. Math. Soc. 27 (1980), no. 4, 349.
  • 2. Benjamin A. Burton, Regina: Normal surface and $ 3$-manifold topology software, http://regina.sourceforge.net/, 1999-2009.
  • 3. -, Face pairing graphs and $ 3$-manifold enumeration, J. Knot Theory Ramifications 13 (2004), no. 8, 1057-1101. MR 2108649 (2005h:57003)
  • 4. -, Introducing Regina, the $ 3$-manifold topology software, Experiment. Math. 13 (2004), no. 3, 267-272. MR 2103324 (2005g:57042)
  • 5. -, Converting between quadrilateral and standard solution sets in normal surface theory, Algebr. Geom. Topol. 9 (2009), no. 4, 2121-2174. MR 2551665
  • 6. -, The complexity of the normal surface solution space, SCG '10: Proceedings of the Twenty-Sixth Annual Symposium on Computational Geometry, ACM, 2010, pp. 201-209. MR 2742952
  • 7. -, Optimizing the double description method for normal surface enumeration, Math. Comp. 79 (2010), no. 269, 453-484. MR 2552235
  • 8. Patrick J. Callahan, Martin V. Hildebrand, and Jeffrey R. Weeks, A census of cusped hyperbolic $ 3$-manifolds, Math. Comp. 68 (1999), no. 225, 321-332. MR 1620219 (99c:57035)
  • 9. Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245-375. MR 0141106 (25:4519a)
  • 10. William Jaco, David Letscher, and J. Hyam Rubinstein, Algorithms for essential surfaces in $ 3$-manifolds, Topology and Geometry: Commemorating SISTAG, Contemporary Mathematics, no. 314, Amer. Math. Soc., Providence, RI, 2002, pp. 107-124. MR 1941626 (2003m:57043)
  • 11. William Jaco and Ulrich Oertel, An algorithm to decide if a $ 3$-manifold is a Haken manifold, Topology 23 (1984), no. 2, 195-209. MR 744850 (85j:57014)
  • 12. William Jaco, Hyam Rubinstein, and Stephan Tillmann, Minimal triangulations for an infinite family of lens spaces, J. Topol. 2 (2009), no. 1, 157-180. MR 2499441 (2010b:57016)
  • 13. William Jaco and J. Hyam Rubinstein, 0-efficient triangulations of $ 3$-manifolds, J. Differential Geom. 65 (2003), no. 1, 61-168. MR 2057531 (2005d:57034)
  • 14. Sergei V. Matveev, Computer recognition of three-manifolds, Experiment. Math. 7 (1998), no. 2, 153-161. MR 1677162 (2000b:57033)
  • 15. P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika 17 (1970), 179-184. MR 0283691 (44:921)
  • 16. Ulrich Oertel, Homology branched surfaces: Thurston's norm on $ H\sb 2(M\sp 3)$, Low-Dimensional Topology and Kleinian Groups (Coventry/Durham, 1984), London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 253-272. MR 903869 (89e:57011)
  • 17. Udo Pachner, P.L. homeomorphic manifolds are equivalent by elementary shellings, European J. Combin. 12 (1991), no. 2, 129-145. MR 1095161 (92d:52040)
  • 18. Jeffrey L. Tollefson, Isotopy classes of incompressible surfaces in irreducible $ 3$-manifolds, Osaka J. Math. 32 (1995), no. 4, 1087-1111. MR 1380743 (97f:57023)
  • 19. -, Normal surface $ Q$-theory, Pacific J. Math. 183 (1998), no. 2, 359-374. MR 1625962 (99c:57047)
  • 20. C. Weber and H. Seifert, Die beiden Dodekaederräume, Math. Z. 37 (1933), no. 1, 237-253. MR 1545392

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57N10

Retrieve articles in all journals with MSC (2010): 57N10


Additional Information

Benjamin A. Burton
Affiliation: School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia
Email: bab@maths.uq.edu.au

J. Hyam Rubinstein
Affiliation: Department of Mathematics and Statistics, The University of Melbourne, VIC 3010, Australia
Email: rubin@ms.unimelb.edu.au

Stephan Tillmann
Affiliation: School of Mathematics and Physics, The University of Queensland, Brisbane QLD 4072, Australia
Email: tillmann@maths.uq.edu.au

DOI: https://doi.org/10.1090/S0002-9947-2011-05419-X
Keywords: Haken manifold, Weber-Seifert dodecahedral space, normal surface, incompressible surface
Received by editor(s): March 3, 2010
Received by editor(s) in revised form: July 10, 2010
Published electronically: October 5, 2011
Additional Notes: The first author was supported under the Australian Research Council’s Discovery funding scheme (project DP1094516).
The second and third authors were partially supported under the Australian Research Council’s Discovery funding scheme (projects DP0664276 and DP1095760).
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.