Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Intersections of dilatates of convex bodies

Authors: Stefano Campi, Richard J. Gardner and Paolo Gronchi
Journal: Trans. Amer. Math. Soc. 364 (2012), 1193-1210
MSC (2010): Primary 52A20, 52A40; Secondary 52A38
Published electronically: October 25, 2011
MathSciNet review: 2869174
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We initiate a systematic investigation into the nature of the function $ \alpha _K(L,\rho )$ that gives the volume of the intersection of one convex body $ K$ in $ \mathbb{R}^n$ and a dilatate $ \rho L$ of another convex body $ L$ in $ \mathbb{R}^n$, as well as the function $ \eta _K(L,\rho )$ that gives the $ (n-1)$-dimensional Hausdorff measure of the intersection of $ K$ and the boundary $ \partial (\rho L)$ of $ \rho L$. The focus is on the concavity properties of $ \alpha _K(L,\rho )$. Of particular interest is the case when $ K$ and $ L$ are symmetric with respect to the origin. In this situation, there is an interesting change in the concavity properties of $ \alpha _K(L,\rho )$ between dimension 2 and dimensions 3 or higher. When $ L$ is the unit ball, an important special case with connections to E. Lutwak's dual Brunn-Minkowski theory, we prove that this change occurs between dimension 2 and dimensions 4 or higher, and conjecture that it occurs between dimension 3 and dimension 4. We also establish an isoperimetric inequality with equality condition for subsets of equatorial zones in the sphere $ S^2$, and apply this and the Brunn-Minkowski inequality in the sphere to obtain results related to this conjecture, as well as to the properties of a new type of symmetral of a convex body, which we call the equatorial symmetral.

References [Enhancements On Off] (What's this?)

  • 1. R. Benguria, M. Levitin, and L. Parnovski, Fourier transform, null variety, and Laplacian's eigenvalues, J. Funct. Anal. 257 (2009), 2088-2123. MR 2548031
  • 2. T. Bonnesen, Les problèmes des isopérimètres et des isépiphanes, Gauthier-Villars, Paris, 1929.
  • 3. T. Bonnesen and W. Fenchel, Theory of Convex Bodies, BCS Associates, Moscow, Idaho, 1987. MR 920366 (88j:52001)
  • 4. Y. D. Burago and V. A. Zalgaller, Geometric Inequalities, Springer, Berlin, 1988. MR 936419 (89b:52020)
  • 5. S. Campi, Isoperimetric deficit and convex plane sets of maximum translative discrepancy, Geom. Dedicata 43 (1992), 71-81. MR 1169365 (93d:52012)
  • 6. S. Dar, A Brunn-Minkowski-type inequality, Geom. Dedicata 77 (1999), 1-9. MR 1706512 (2000i:52021)
  • 7. R. J. Gardner, A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. (2) 140 (1994), 435-447. MR 1298719 (95i:52005)
  • 8. R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc. 39 (2002), 355-405. MR 1898210 (2003f:26035)
  • 9. R. J. Gardner, Geometric Tomography, second edition, Cambridge University Press, New York, 2006. MR 2251886 (2007i:52010)
  • 10. R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytical solution to the Busemann-Petty problem on sections of convex bodies, Ann. of Math. (2) 149 (1999), 691-703. MR 1689343 (2001b:52011)
  • 11. R. J. Gardner, E. B. Vedel Jensen, and A. , Geometric tomography and local stereology, Adv. in Appl. Math. 30 (2003), 397-423. MR 1973951 (2004e:28006)
  • 12. P. M. Gruber, Convex and Discrete Geometry, Springer, Berlin, 2007. MR 2335496 (2008f:52001)
  • 13. G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge University Press, Cambridge, 1959.
  • 14. E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), 531-538. MR 0380631 (52:1528)
  • 15. E. Lutwak, Mean dual and harmonic cross-sectional measures, Ann. Mat. Pura Appl. (4) 119 (1979), 139-148. MR 551220 (80m:52007)
  • 16. E. Lutwak, Intersection bodies and dual mixed volumes, Adv. Math. 71 (1988), 232-261. MR 963487 (90a:52023)
  • 17. G. Pólya, Sur la symétrisation circulaire, C. R. Acad. Sci. Paris 230 (1950), 25-27. MR 0033402 (11:435h)
  • 18. G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Princeton University Press, Princeton, 1951. MR 0043486 (13:270d)
  • 19. J. R. Sangwine-Yager, Bonnesen-style inequalities for Minkowski relative geometry, Trans. Amer. Math. Soc. 307 (1988), 373-382. MR 936821 (89g:52007)
  • 20. R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge University Press, Cambridge, 1993. MR 1216521 (94d:52007)
  • 21. Gaoyong Zhang, Intersection bodies and the Busemann-Petty inequalities in $ {\mathbb{R}}^4$, Ann. of Math. (2) 140 (1994), 331-346. MR 1298716 (95i:52004)
  • 22. Gaoyong Zhang, A positive answer to the Busemann-Petty problem in four dimensions, Ann. of Math. (2) 149 (1999), 535-543. MR 1689339 (2001b:52010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 52A20, 52A40, 52A38

Retrieve articles in all journals with MSC (2010): 52A20, 52A40, 52A38

Additional Information

Stefano Campi
Affiliation: Dipartimento di Ingegneria dell’Informazione, Università degli Studi di Siena, Via Roma 56, 53100 Siena, Italy

Richard J. Gardner
Affiliation: Department of Mathematics, Western Washington University, Bellingham, Washington 98225-9063

Paolo Gronchi
Affiliation: Dipartimento di Matematica e Applicazioni per l’Architettura, Università degli Studi di Firenze, Piazza Ghiberti 27, 50122 Firenze, Italy

Keywords: Convex body, intersection, dilatate, Brunn-Minkowski inequality, isoperimetric inequality, symmetral, ball, sphere
Received by editor(s): February 22, 2010
Published electronically: October 25, 2011
Additional Notes: The second author was supported in part by the U.S. National Science Foundation Grant DMS-0603307.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society