Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 

 

Scattering for the cubic Klein-Gordon equation in two space dimensions


Authors: Rowan Killip, Betsy Stovall and Monica Visan
Journal: Trans. Amer. Math. Soc. 364 (2012), 1571-1631
MSC (2010): Primary 35L71; Secondary 35Q40
Published electronically: September 15, 2011
MathSciNet review: 2869186
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider both the defocusing and focusing cubic nonlinear Klein-Gordon equations

$\displaystyle u_{tt} - \Delta u + u \pm u^3 =0 $

in two space dimensions for real-valued initial data $ u(0)\in H^1_x$ and $ u_t(0)\in L^2_x$. We show that in the defocusing case, solutions are global and have finite global $ L^4_{t,x}$ spacetime bounds. In the focusing case, we characterize the dichotomy between this behaviour and blowup for initial data with energy less than that of the ground state.

These results rely on analogous statements for the two-dimensional cubic nonlinear Schrödinger equation, which are known in the defocusing case and for spherically-symmetric initial data in the focusing case. Thus, our results are mostly unconditional.

It was previously shown by Nakanishi that spacetime bounds for Klein-Gordon equations imply the same for nonlinear Schrödinger equations.


References [Enhancements On Off] (What's this?)

  • 1. T. Akahori and H. Nawa, Blowup and scattering problems for the nonlinear Schrödinger equations. Preprint arXiv:1006.1485.
  • 2. H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math. 121 (1999), 131-175. MR 1705001
  • 3. P. Bégout and A. Vargas, Mass concentration phenomena for the $ L^2$-critical nonlinear Schrödinger equation. Trans. Amer. Math. Soc. 359 (2007), 5257-5282. MR 2327030
  • 4. J. Bourgain, Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case. J. Amer. Math. Soc. 12 (1999), 145-171. MR 1626257
  • 5. J. Bourgain, Global solutions of nonlinear Schrödinger equations. American Mathematical Society Colloquium Publications, 46. American Mathematical Society, Providence, RI, 1999. MR 1691575
  • 6. H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals. Proc. Amer. Math. Soc. 88 (1983), 486-490. MR 0699419
  • 7. T. Cazenave, Semilinear Schrödinger equations. Courant Lecture Notes in Mathematics, 10. American Mathematical Society, Providence, RI, 2003. MR 2002047
  • 8. M. Christ, J. Colliander, and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations. Amer. J. Math. 125 (2003), 1235-1293. MR 2018661
  • 9. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao, Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in $ \mathbb{R}^3$. Ann. of Math. (2) 167 (2008), 767-865. MR 2415387
  • 10. P. Constantin and J.-C. Saut, Local smoothing properties of dispersive equations. J. Amer. Math. Soc. 1 (1988), 413-439. MR 0928265
  • 11. B. Dodson, Global well-posedness and scattering for the defocusing, $ L^{2}$-critical, nonlinear Schrödinger equation when $ d \geq 3$. Preprint arXiv:0912.2467
  • 12. B. Dodson, Global well-posedness and scattering for the defocusing, $ L^{2}$-critical, nonlinear Schrödinger equation when $ d = 2$. Preprint arXiv:1006.1375
  • 13. T. Duyckaerts, J. Holmer, and S. Roudenko, Scattering for the non-radial $ 3D$ cubic nonlinear Schrödinger equation. Math. Res. Lett. 15 (2008), 1233-1250. MR 2470397
  • 14. J. Ginibre and G. Velo, Time decay of finite energy solutions of the nonlinear Klein-Gordon and Schrödinger equations. Ann. Inst. H. Poincaré Phys. Théor. 43 (1985), 399-442. MR 824083 (87g:35208)
  • 15. S. Ibrahim, N. Masmoudi, M. Majdoub, and K. Nakanishi, Scattering for the two-dimensional energy-critical wave equation. Duke Math. J. 150 (2009), 287-329. MR 2569615
  • 16. S. Ibrahim, N. Masmoudi, and K. Nakanishi, Scattering threshold for the focusing nonlinear Klein-Gordon equation. Preprint arXiv:1001.1474.
  • 17. M. Keel and T. Tao, Endpoint Strichartz estimates. Amer. J. Math. 120 (1998), 955-980. MR 1646048
  • 18. C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166 (2006), 645-675. MR 2257393
  • 19. C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical focusing non-linear wave equation. Acta Math. 201 (2008), 147-212. MR 2461508
  • 20. S. Keraani, On the blow-up phenomenon of the critical nonlinear Schrödinger equation. J. Funct. Anal. 235 (2006), 171-192. MR 2216444
  • 21. R. Killip, S. Kwon, S. Shao, and M. Visan, On the mass-critical generalized KdV equation. Preprint arXiv:0907.5412.
  • 22. R. Killip, T. Tao, and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data. J. Eur. Math. Soc. (JEMS) 11 (2009), 1203-1258. MR 2557134
  • 23. R. Killip and M. Visan, Nonlinear Schrödinger equations at critical regularity. To appear in proceedings of the Clay summer school ``Evolution Equations'', June 23-July 18, 2008, Eidgenössische Technische Hochschule, Zürich.
  • 24. R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher. Amer. J. Math. 132 (2010), 361-424. MR 2654778
  • 25. R. Killip, M. Visan, and X. Zhang, The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher. Anal. PDE 1 (2008), 229-266. MR 2472890
  • 26. M. K. Kwong, Uniqueness of positive solutions of $ \Delta u-u+u^p=0$ in $ \mathbb{R}^n$. Arch. Rational Mech. Anal. 105 (1989), 243-266. MR 0969899
  • 27. E. H. Lieb and M. Loss, Analysis. Second edition. Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI, 2001. MR 1817225
  • 28. P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. I. Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 109-145. MR 0778970
  • 29. A. Moyua, A. Vargas, and L. Vega, Restriction theorems and maximal operators related to oscillatory integrals in $ \mathbb{R}\sp 3$. Duke Math. J. 96 (1999), 547-574. MR 1671214
  • 30. K. Nakanishi, Scattering theory for nonlinear Klein-Gordon equation with Sobolev critical power. Internat. Math. Res. Notices 1 (1999), 31-60. MR 1666973
  • 31. K. Nakanishi, Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions $ 1$ and $ 2$. J. Funct. Anal. 169 (1999), 201-225. MR 1726753
  • 32. K. Nakanishi, Remarks on the energy scattering for nonlinear Klein-Gordon and Schrödinger equations. Tohoku Math. J. 53 (2001), 285-303. MR 1829982
  • 33. K. Nakanishi, Transfer of global wellposedness from nonlinear Klein-Gordon equation to nonlinear Schrödinger equation. Hokkaido Math. J. 37 (2008), 749-771. MR 2474174
  • 34. L. E. Payne and D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations. Israel J. Math. 22 (1975), 273-303. MR 0402291
  • 35. E. Ryckman and M. Visan, Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in $ \mathbb{R}^{1+4}$. Amer. J. Math. 129 (2007), 1-60. MR 2288737
  • 36. P. Sjölin, Regularity of solutions to the Schrödinger equation. Duke Math. J. 55 (1987), 699-715. MR 0904948
  • 37. E. M. Stein, Singular integrals and differentiability properties of functions. Princeton Mathematical Series, 30. Princeton University Press, Princeton, NJ, 1970. MR 0290095
  • 38. E. M. Stein, Some problems in harmonic analysis. In ``Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978), Part 1.'' Proc. Sympos. Pure Math., XXXV, Part 1, Amer. Math. Soc., Providence, RI, 1979. MR 0545235
  • 39. E. M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals. Princeton Mathematical Series, 43. Princeton University Press, Princeton, NJ, 1993. MR 1232192
  • 40. T. Tao, A sharp bilinear restrictions estimate for paraboloids. Geom. Funct. Anal. 13 (2003), 1359-1384. MR 2033842
  • 41. T. Tao, Two remarks on the generalised Korteweg-de Vries equation. Discrete Contin. Dyn. Syst. 18 (2007), 1-14. MR 2276483
  • 42. T. Tao and M. Visan, Stability of energy-critical nonlinear Schrödinger equations in high dimensions. Electron. J. Diff. Eqns. 118 (2005), 1-28. MR 2174550
  • 43. T. Tao, M. Visan, and X. Zhang, The nonlinear Schrödinger equation with combined power-type nonlinearities. Comm. Partial Differential Equations 32 (2007), 1281-1343. MR 2354495
  • 44. T. Tao, M. Visan, and X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS. Forum Math. 20 (2008), 881-919. MR 2445122
  • 45. T. Tao, M. Visan, and X. Zhang, Global well-posedness and scattering for the mass-critical nonlinear Schrödinger equation for radial data in high dimensions. Duke Math. J. 140 (2007), 165-202. MR 2355070
  • 46. M. Visan, The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions. Duke Math. J. 138 (2007), 281-374. MR 2318286
  • 47. L. Vega, Schrödinger equations: pointwise convergence to the initial data. Proc. Amer. Math. Soc. 102 (1988), 874-878. MR 0934859
  • 48. M. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates. Comm. Math. Phys. 87 (1983), 567-576. MR 0691044

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35L71, 35Q40

Retrieve articles in all journals with MSC (2010): 35L71, 35Q40


Additional Information

Rowan Killip
Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095-1555

Betsy Stovall
Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095-1555

Monica Visan
Affiliation: Department of Mathematics, University of California, Los Angeles, California 90095-1555

DOI: http://dx.doi.org/10.1090/S0002-9947-2011-05536-4
Received by editor(s): August 20, 2010
Received by editor(s) in revised form: December 27, 2010
Published electronically: September 15, 2011
Article copyright: © Copyright 2011 American Mathematical Society