Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



A dynamical pairing between two rational maps

Authors: Clayton Petsche, Lucien Szpiro and Thomas J. Tucker
Journal: Trans. Amer. Math. Soc. 364 (2012), 1687-1710
MSC (2010): Primary 11G50, 14G40, 37P15
Published electronically: November 10, 2011
MathSciNet review: 2869188
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given two rational maps $ \varphi $ and $ \psi $ on $ \mathbb{P}^1$ of degree at least two, we study a symmetric, nonnegative real-valued pairing $ \langle \varphi ,\psi \rangle $ which is closely related to the canonical height functions $ h_\varphi $ and $ h_\psi $ associated to these maps. Our main results show a strong connection between the value of $ \langle \varphi ,\psi \rangle $ and the canonical heights of points which are small with respect to at least one of the two maps $ \varphi $ and $ \psi $. Several necessary and sufficient conditions are given for the vanishing of $ \langle \varphi ,\psi \rangle $. We give an explicit upper bound on the difference between the canonical height $ h_\psi $ and the standard height $ h_{\mathrm {st}}$ in terms of $ \langle \sigma ,\psi \rangle $, where $ \sigma (x)=x^2$ denotes the squaring map. The pairing $ \langle \sigma ,\psi \rangle $ is computed or approximated for several families of rational maps $ \psi $.

References [Enhancements On Off] (What's this?)

  • 1. S. Arakelov,
    Intersection theory of divisors on an arithmetic surface,
    Math. USSR Izvestija 8 (1974) 1167-1180. MR 0472815 (57:12505)
  • 2. M. Baker and L. DeMarco,
    Preperiodic points and unlikely intersections,
  • 3. M. Baker and R. Rumely,
    Equidistribution of small points, rational dynamics, and potential theory,
    Ann. Inst. Fourier (Grenoble) 56 no. 3 (2006) 625-688. MR 2244226 (2007m:11082)
  • 4. M. Baker and R. Rumely.
    Potential Theory and Dynamics on the Berkovich Projective Line.
    Mathematical Surveys and Monographs, vol. 159, Amer. Math. Soc., Providence, RI, 2010. MR 2599526
  • 5. V. Berkovich,
    Spectral Theory and Analytic Geometry over Non-Archimedean Fields,
    Mathematical Surveys and Monographs, vol. 33, Amer. Math. Soc., Providence, RI, 1990. MR 1070709 (91k:32038)
  • 6. Y. Bilu.
    Limit distribution of small points on algebraic tori.
    Duke Math. J., 89: 465-476, 1997. MR 1470340 (98m:11067)
  • 7. E. Bombieri and W. Gubler,
    Heights in Diophantine Geometry,
    Cambridge University Press, Cambridge, 2006. MR 2216774 (2007a:11092)
  • 8. J.-B. Bost, H. Gillet, and C. Soulé,
    Heights of projective varieties and positive green forms,
    J. Amer. Math. Soc. 7 (1994), 903-1027. MR 1260106 (95j:14025)
  • 9. D. Boyd,
    Speculations concerning the range of Mahler's measure,
    Canadian Mathematical Bulletin 24 (1981), 453-469. MR 644535 (83h:12002)
  • 10. H. Brolin,
    Invariant sets under iteration of rational functions,
    Ark. Mat. 6 (1965) 103-144. MR 0194595 (33:2805)
  • 11. G. S. Call and J. H. Silverman,
    Canonical heights on varieties with morphisms,
    Compositio Mathematica 89 no. 2 (1993) 163-205. MR 1255693 (95d:11077)
  • 12. A. Chambert-Loir,
    Mesures et équidistribution sur les espaces de Berkovich,
    J. für die reine und angewandte Mathematik 595 (2006) 215-235. MR 2244803 (2008b:14040)
  • 13. A. Chambert-Loir and A. Thuillier,
    Mesures de Mahler et équidistribution logarithmique,
    Annales de l'Institut Fourier 59 (2009) 977-1014 MR 2543659
  • 14. P. Deligne,
    Le déterminant de la cohomologie,
    Current trends in arithmetical algebraic geometry, Contemporary Mathematics, vol. 67, American Mathematical Society, Providence, RI, 1987, pp. 94-177. MR 902592 (89b:32038)
  • 15. G. Faltings,
    Calculus on arithmetic surfaces,
    Ann. of Math. (2) 119 (1984), no. 2, 387-424. MR 740897 (86e:14009)
  • 16. C. Favre and J. Rivera-Letelier,
    Équidistribution quantitative des points de petite hauteur sur la droite projective,
    Math. Ann. (2) 335 (2006) 311-361. MR 2221116 (2007g:11074)
  • 17. C. Favre and J. Rivera-Letelier,
    Théorie ergodique des fractions rationnelles sur un corps ultramétrique,
    Proc. London Math. Soc. (3) 100 (2010), no. 1, 116-154. MR 2578470
  • 18. A. Freire, A. Lopes, and R. Mañé,
    An invariant measure for rational maps,
    Bol. Soc. Brasil. Mat. 14 (1983) 45-62. MR 736568 (85m:58110b)
  • 19. S. Kawaguchi and J. Silverman,
    Dynamics of projective morphisms having identical canonical heights.
    Proc. London Math. Soc. 95 (2007) 519-544. MR 2352570 (2008j:11076)
  • 20. M. Ljubich.
    Entropy properties of rational endomorphisms of the Riemann sphere.
    Ergodic Theory Dynamical Systems 3 (1983) 351-385. MR 741393 (85k:58049)
  • 21. J. Milnor.
    Dynamics in One Complex Variable.
    Annals of Mathematics Studies, vol. 160, Princeton University Press, Princeton, 2006. MR 2193309 (2006g:37070)
  • 22. A. Mimar.
    On the preperiodic points of an endomorphism of $ \mathbb{P}^1\times \mathbb{P}^1$ which lie on a curve.
    Ph.D. Dissertation, Columbia University (1997).
  • 23. Joseph H. Silverman.
    The Arithmetic of Elliptic Curves, volume 106 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, 1986. MR 817210 (87g:11070)
  • 24. J. H. Silverman.
    Advanced Topics in the Arithmetic of Elliptic Curves, volume 151 of Graduate Texts in Mathematics.
    Springer-Verlag, New York, 1994. MR 1312368 (96b:11074)
  • 25. J. H. Silverman.
    The Arithmetic of Dynamical Systems, volume 241 of Graduate Texts in Mathematics.
    Springer, New York, 2007. MR 2316407 (2008c:11002)
  • 26. L. Szpiro and T.J. Tucker.
    Equidistribution and generalized Mahler measures,
    Preprint (2009).
  • 27. L. Szpiro, E. Ullmo, and S. Zhang.
    Équirépartition des petits points.
    Invent. Math., 127:337-347, 1997. MR 1427622 (98i:14027)
  • 28. A. Thuillier.
    Théorie du potentiel sur les courbes en géométrie analytique non archimédienne. Applications à la théorie d'Arakelov.
    Ph.D. thesis, University of Rennes, 2005.
  • 29. B. van der Waerden.
    Modern Algebra. Vol. II.
    Frederick Ungar Publishing Co., New York, 1949. MR 0029363 (10:587b)
  • 30. S. Zhang.
    Small points and adelic metrics,
    J. Alg. Geom. 4(2) (1995) 281-300. MR 1311351 (96e:14025)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11G50, 14G40, 37P15

Retrieve articles in all journals with MSC (2010): 11G50, 14G40, 37P15

Additional Information

Clayton Petsche
Affiliation: Department of Mathematics and Statistics, Hunter College, 695 Park Avenue, New York, New York 10065
Address at time of publication: Department of Mathematics, Oregon State University, Corvallis, Oregon 97331

Lucien Szpiro
Affiliation: Ph.D. Program in Mathematics, CUNY Graduate Center, 365 Fifth Avenue, New York, New York 10016-4309

Thomas J. Tucker
Affiliation: Department of Mathematics, Hylan Building, University of Rochester, Rochester, New York 14627

Keywords: Arithmetic dynamical systems, canonical heights, equidistribution of small points
Received by editor(s): November 13, 2009
Received by editor(s) in revised form: March 6, 2010
Published electronically: November 10, 2011
Additional Notes: The first author was partially supported by NSF Grant DMS-0901147.
The second author was supported by NSF Grants DMS-0854746 and DMS-0739346.
The third author was supported by NSF Grants DMS-0801072 and DMS-0854839.
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society