Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Objective B-fields and a Hitchin-Kobayashi correspondence


Author: Shuguang Wang
Journal: Trans. Amer. Math. Soc. 364 (2012), 2087-2107
MSC (2010): Primary 53C07, 53C08, 57R20
DOI: https://doi.org/10.1090/S0002-9947-2011-05413-9
Published electronically: December 1, 2011
MathSciNet review: 2869199
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A simple trick invoking objective B-fields is employed to refine the concept of characteristic classes for twisted bundles. Then the objective stability and objective Einstein metrics are introduced and a new Hitchin-Kobayashi correspondence is established between them.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, $ K$-theory, past and present, Sitzungsberichte der Berliner Mathematischen Gesellschaft, 411-417, Berliner Math. Gesellschaft, Berlin, 2001. MR 2091892
  • [2] P. Bouwknegt, A. L. Carey, V. Mathai, M. K. Murray, D. Stevenson, Twisted $ K$-theory and $ K$-theory of bundle gerbes, Comm. Math. Phys. 228 (2002) 17-45. MR 1911247 (2003g:58049)
  • [3] P. Bouwknegt, V. Mathai, $ D$-branes, B-fields and twisted K-theory, J. High Energy Phys. 3 (2000) 7-25. MR 1756434 (2001i:81198)
  • [4] J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics 107, Birkhauser Boston, 1993. MR 1197353 (94b:57030)
  • [5] A. Căldăraru, Nonfine moduli spaces of sheaves on $ K3$ surfaces, Int. Math. Res. Notice 20 (2002) 1027-1056. MR 1902629 (2003b:14017)
  • [6] D. S. Chatterjee, On Gerbes, Ph.D. thesis, Cambridge University, 1998.
  • [7] R. Donagi, T. Pantev, B. A. Ovrut, R. Reinbacher, $ \rm SU(4)$ instantons on Calabi-Yau threefolds with $ \mathbb{Z}\sb 2\times \mathbb{Z}\sb 2$ fundamental group, J. High Energy Phys. 2004, no. 1, 022, 58 pp. MR 2045884 (2004k:14066)
  • [8] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3) 50 (1985) 1-26. MR 765366 (86h:58038)
  • [9] -, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231-247. MR 885784 (88g:32046)
  • [10] -, The orientation of Yang-Mills moduli spaces and $ 4$-manifold topology, J. Diff. Geom. 26 (1987) 397-428. MR 910015 (88j:57020)
  • [11] S. K. Donaldson, P. B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1990. MR 1079726 (92a:57036)
  • [12] N. J. Hitchin, Lectures on special Lagrangian submanifolds, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge, MA, 1999) 151-182, AMS/IP Stud. Adv. Math., 23, Amer. Math. Soc., 2001. MR 1876068 (2003f:53086)
  • [13] D. Huybrechts, P. Stellari, Proof of Căldăraru's conjecture. In moduli spaces and arithmetic geometry, 31-42, Adv. Stud. Pure Math., 45, Math. Soc. Japan, Tokyo, 2006. MR 2310257 (2008f:14035)
  • [14] S. Kobayashi, Differential Geometry of Complex Vector Bundles, Princeton University Press, 1987. MR 909698 (89e:53100)
  • [15] J. Li, Anti-self-dual connections and stable vector bundles, Gauge theory and the topology of four-manifolds (Park City, UT, 1994), 23-49, IAS/Park City Math. Ser., 4, Amer. Math. Soc., Providence, RI, 1998. MR 1611446 (99e:53025)
  • [16] M. Lübke, Stability of Einstein-Hermitian vector bundles, Manuscripta Math. 42 (1983) 245-257. MR 701206 (85e:53087)
  • [17] E. Lupercio, B. Uribe, Gerbes over orbifolds and twisted $ K$-theory, Comm. Math. Phys. 245 (2004) 449-489. MR 2045679 (2005m:53035)
  • [18] M. Mackaay, A note on the holonomy of connections in twisted bundles, Cah. Topol. Geom. Differ. Categ. 44 (2003) 39-62. MR 1961525 (2004d:53056)
  • [19] M. Mackaay, R. Picken, Holonomy and parallel transport for Abelian gerbes, Adv. Math. 170 (2002) 287-339. MR 1932333 (2004a:53052)
  • [20] V. Mathai, R. B. Melrose, I. M. Singer, The index of projective families of elliptic operators, Geom. Top. 9 (2005) 341-373. MR 2140985 (2005m:58044)
  • [21] M. K. Murray, Bundle gerbes, J. London Math. Soc. 54 (1996) 403-416. MR 1405064 (98a:55016)
  • [22] M. Murray, M. A. Singer, Gerbes, Clifford modules and the index theorem, Ann. Global Anal. Geom. 26 (2004), 355-367. MR 2103405 (2005g:19008)
  • [23] J. Pan, Y. Ruan, X. Yin, Gerbes and twisted orbifold quantum cohomology, math.AG/0504369.
  • [24] C. T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc. 1 (1988) 867-918. MR 944577 (90e:58026)
  • [25] K. Uhlenbeck, S. T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986) S257-S293. MR 861491 (88i:58154)
  • [26] S. Wang, A Narasimhan-Seshadri-Donaldson correspondence over non-orientable surfaces, Forum Math. 8 (1996) 461-474. MR 1393324 (98h:53043)
  • [27] -, Gerbes, holonomy forms and real structures, Comm. Contemp. Math. 11 (2009) 109-130. MR 2498389 (2010b:53048)
  • [28] A. Weinstein, The Maslov gerbe, Lett. Math. Phys. 69 (2004), 3-9. MR 2104435 (2006d:53102)
  • [29] R. O. Wells, Differential analysis on complex manifolds, Springer Verlag, 1980. MR 608414 (83f:58001)
  • [30] K. Yoshioka, Moduli spaces of twisted sheaves on a projective variety. In Moduli Spaces and Arithmetic Geometry, pp. 1-30, Adv. Stud. Pure Math., Vol. 45, Math. Soc. Japan, Tokyo, 2006. MR 2306170 (2008f:14024)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 53C07, 53C08, 57R20

Retrieve articles in all journals with MSC (2010): 53C07, 53C08, 57R20


Additional Information

Shuguang Wang
Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
Email: wangs@missouri.edu

DOI: https://doi.org/10.1090/S0002-9947-2011-05413-9
Keywords: Objective Chern classes, Hermitian-Einstein metric, stable bundle, Hitchin-Kobayashi correspondence
Received by editor(s): July 30, 2009
Received by editor(s) in revised form: May 10, 2010, and June 15, 2010
Published electronically: December 1, 2011
Article copyright: © Copyright 2011 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society