Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Sign changes of the error term in Weyl's law for Heisenberg manifolds


Authors: Kai-Man Tsang and Wenguang Zhai
Journal: Trans. Amer. Math. Soc. 364 (2012), 2647-2666
MSC (2010): Primary 11N37, 35P20, 58J50
DOI: https://doi.org/10.1090/S0002-9947-2012-05437-7
Published electronically: January 19, 2012
MathSciNet review: 2888223
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R(T)$ be the error term in Weyl's law for the $ (2l+1)$-dimen-
sional Heisenberg manifold $ (H_l/\Gamma , g_l)$. In this paper, several results on the sign changes and odd moments of $ R(t)$ are proved. In particular, it is proved that for some sufficiently large constant $ c$, $ R(t)$ changes sign in the interval $ [T, T + c \sqrt T]$ for all large $ T$. Moreover, for a small constant $ c_1$ there exist infinitely many subintervals in $ [T, 2T]$ of length $ c_1 \sqrt T \log ^{-5} T$ such that $ \pm R(t)>c_1t^{l - 1/4}$ holds on each of these subintervals.


References [Enhancements On Off] (What's this?)

  • 1. V. Bentkus and F. Götze, Lattice point problems and distribution of values of quadratic forms, Ann. of Math. (2) 50:3(1999), 977-1027. MR 1740988 (2001b:11087)
  • 2. P. H. Bérard, On the wave equation on a compact Riemannian manifold without conjugate points, Math. Z. 155:3(1977), 249-276. MR 0455055 (56:13295)
  • 3. L. Bleher, On the distribution of the number of lattice points inside a family of convex ovals, Duke Math. J. 67:3(1992), 461-481. MR 1181309 (93h:11110)
  • 4. D. Chung, Y. N. Petridis and J. Toth, The remainder in Weyl's law for Heisenberg manifolds II, Bonner Mathematische Schriften, Nr. 360, Bonn, 2003, 16 pages. MR 2075620 (2005i:58035)
  • 5. H. Cramér, Über zwei Sätze von Herrn G. H. Hardy, Math. Z. 15(1922), 201-210. MR 1544568
  • 6. G. B. Folland, Harmonic Analysis in Phase Space, Princeton University Press (1989), 9-73. MR 983366 (92k:22017)
  • 7. F. Fricker, Einführung in die Gitterpunketlehre, [Introduction to lattice point theory] Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften (LMW), Mathematische Reihe [Textbooks and Monographs in the Exact Sciences] 73, Birkhäuser Verlag, Basel-Boston, 1982. MR 673938 (84b:10001)
  • 8. A. Good, Ein $ \Omega $-Resultat für das quadratische Mittel del Riemannschen Zetafunktion auf der kritische Linie, Invent. Math. 41(1977), 233-251. MR 0460253 (57:247)
  • 9. C. Gordon and E. Wilson, The spectrum of the Laplacian on Riemannian Heisenberg manifolds, Michigan Math. J. 33:2(1986), 253-271. MR 837583 (87k:58275)
  • 10. F. Götze, Lattice point problems and values of quadratic forms, Inventiones Mathematicae 157(2004), 195-226. MR 2135188 (2005m:11185)
  • 11. G. H. Hardy, On the expression of a number as the sum of two squares, Quart. J Math. 46(1915), 263-283.
  • 12. D. R. Heath-Brown and K.Tsang, Sign changes of $ E(t), \Delta (x)$ and $ P(x),$ J. of Number Theory 49(1994), 73-83. MR 1295953 (96a:11093)
  • 13. L. Hörmander, The spectral function of an elliptic operator, Acta Math. 121(1968), 193-218. MR 0609014 (58:29418)
  • 14. M. N. Huxley, Exponential sums and lattice points III, Proc. London Math. Soc. 87:3(2003), 591-609. MR 2005876 (2004m:11127)
  • 15. A. Ivić, The Riemann-zeta function, John Wiley & Sons, New York, 1985. MR 792089 (87d:11062)
  • 16. A. Ivić and Wenguang Zhai, Higher moments of the error term in the divisor problem, to appear in Mat. Zametki.
  • 17. V. YA. Ivrii, Precise Spectral Asymptotics for Elliptic Operators Acting in Fibrings over Manifolds with Boundary, Springer Lecture Notes in Mathematics 1100(1984). MR 771297 (86h:58139)
  • 18. M. Jutila, On the divisor problem for short intervals, Ann. Univ. Turkuensis Ser. AI 186(1984), 23-30. MR 748516 (85i:11077)
  • 19. M. Khosravi, Third moment of the remainder error term in Weyl's law for Heisenberg manifolds, arXiv: 0711.0073.
  • 20. M. Khosravi and Y. Petridis, The remainder in Weyl's law for $ n$-dimensional Heisenberg manifolds, Proc. of the American Math. Soc. 133(2005), 3561-3571. MR 2163591 (2006e:58045)
  • 21. M. Khosravi and J. Toth, Cramér's formula for Heisenberg manifolds, Ann. de l'institut Fourier 55(2005), 2489-2520. MR 2207391 (2007b:58043)
  • 22. Y. Lau and K. Tsang, On the mean square formula of the error term in the Dirichlet divisor problem, Math. Proc. Camb. Phil. Soc. 146(2009), 277-287. MR 2475967 (2009k:11149)
  • 23. W. G. Nowak, A lower bound for the error term in Weyl's law for certain Heisenberg manifolds, arXiv: 0809.3924.
  • 24. W. G. Nowak, A lower bound for the error term in Weyl's law for certain Heisenberg manifolds.II, arXiv: 0810.2235.
  • 25. Y. Petribis and J. Toth, The remainder in Weyl's law for Heisenberg manifolds, J. Differential Geom. 60(2002), 455-483. MR 1950173 (2004c:58054)
  • 26. K. Soundararajan, Omega results for the divisor and circle problems, J. Int. Math. Res. Not. 36(2003), 1987-1998. MR 1991181 (2004f:11105)
  • 27. E. M. Stein, Harmonic Analysis, Princeston University Press (1993), 527-574. MR 1232192 (95c:42002)
  • 28. Kai-Man Tsang, Higher-power moments of $ \Delta (x), E(t)$ and $ P(x)$, Proc. London Math. Soc. 65:3(1992), 65-84. MR 1162488 (93c:11082)
  • 29. A. V. Volovoy, Improved two-term asymptotics for the eigenvalue distribution function of an elliptic operator on a compact manifold, Comm. Partial Differential Equations 15:11(1990), 1509-1563. MR 1079602 (91m:58158)
  • 30. Wenguang Zhai, On higher-power moments of $ \Delta (x)$ (II), Acta Arith. 114(2004), 35-54. MR 2067871 (2005h:11216)
  • 31. Wenguang Zhai, On higher-power moments of $ \Delta (x)$ (III), Acta Arith. 118(2005), 263-281. MR 2168766 (2006f:11121)
  • 32. Wenguang Zhai, On the error term in the Weyl's law for Heisenberg manifolds, Acta Arith. 134(2008), 219-257. MR 2438847 (2009h:11154)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 11N37, 35P20, 58J50

Retrieve articles in all journals with MSC (2010): 11N37, 35P20, 58J50


Additional Information

Kai-Man Tsang
Affiliation: Department of Mathematics, University of Hong Kong, Pokfulam road, Hong Kong
Email: kmtsang@maths.hku.hk

Wenguang Zhai
Affiliation: Department of Mathematics, China University of Mining and Technology, Beijing 100083, People’s Republic of China
Email: zhaiwg@hotmail.com

DOI: https://doi.org/10.1090/S0002-9947-2012-05437-7
Keywords: Heisenberg manifold, Weyl’s law, error term, Voronoi’s formula, sign change.
Received by editor(s): December 5, 2009
Received by editor(s) in revised form: July 24, 2010
Published electronically: January 19, 2012
Additional Notes: The work of the second author was supported by National Natural Science Foundation of China (Grant No. 10771127) and Mathematical Tianyuan Foundation (No. 10826028).
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society