ON RESTRICTION OF MAXIMAL MULTIPLIERS
IN WEIGHTED SETTINGS

MARÍA J. CARRO AND SALVADOR RODRÍGUEZ-LÓPEZ

Abstract. We obtain restriction results of K. De Leeuw’s type for maximal operators defined through Fourier multipliers of either strong or weak type for weighted L^p spaces with $1 \leq p < \infty$. Applications to the case of Hörmander-Mihlin multipliers, singular integral operators and Bochner-Riesz sums are given.

1. Introduction

In 1965 K. De Leeuw proved that if m is a continuous function on \mathbb{R} such that m is a Fourier multiplier on $L^p(\mathbb{R})$, its restriction to the integers $m|\mathbb{Z}$ is a Fourier multiplier on $L^p(\mathbb{T})$. Moreover, its norm does not exceed the norm of m as a multiplier on $L^p(\mathbb{R})$ (see [8, Proposition 3.3] and Jodeit’s article [12]).

In 1980 C. Kenig and P. Tomas extended De Leeuw’s result to maximal operators associated to a family of multipliers given by the dilations of a given one. More precisely, they proved that if m is a continuous function and if T_r denotes the multiplier operator associated to $m_r(\xi) = m(\xi/r)$, whenever $T^\# f(x) = \sup_{r > 0} |T_r f(x)|$ is a bounded operator on $L^p(\mathbb{R}^d)$ the same holds for the maximal operator on $L^p(\mathbb{T}^d)$ associated to the multipliers $m_r|\mathbb{Z}$. Furthermore, its norm does not exceed a constant times the norm of $T^\#$. They also obtained similar results for operators of weak type for $p > 1$ (see [13]).

In 2003, E. Berkson and T.A. Gillespie extended De Leeuw’s restriction result for multipliers on $L^p(\mathbb{R}, w)$ with w a 1-periodic weight belonging to $A_p(\mathbb{R})$ and $1 < p < \infty$. Such weights are said to be in the class $A_p(\mathbb{T})$. Their result is the following.

Theorem 1.1 ([4, Theorem 1.2]). Let $1 < p < \infty$ and let $w \in A_p(\mathbb{T})$. If m is a continuous function on \mathbb{R} such that it is a Fourier multiplier on $L^p(\mathbb{R}, w)$, then $m|\mathbb{Z}$ is a Fourier multiplier on $L^p(\mathbb{T}, w)$. Moreover, there is a constant $c_{p,w}$ depending only on p and the A_p-constant of w, such that the norm of $m|\mathbb{Z}$ as a multiplier on $L^p(\mathbb{T}, w)$ does not exceed $c_{p,w}$ times the norm of m as a multiplier on $L^p(\mathbb{R}, w)$.

This theorem has been recently improved by K. Andersen and P. Mohanty as follows.

Theorem 1.2 ([1, Theorem 1.1]). Let $1 < p < \infty$ and let $w \in L^1(\mathbb{T}^d)$. If m is a continuous function on \mathbb{R}^d such that it is a Fourier multiplier on $L^p(\mathbb{R}^d, w)$,
Theorem 1.4. Let m_ξ be a Fourier multiplier on $L^p(\mathbb{T}^d, w)$. Moreover, the norm of m_ξ as a multiplier on $L^p(\mathbb{T}^d, w)$ does not exceed the norm of m as a multiplier on $L^p(\mathbb{R}^d, w)$.

The purpose of this paper is twofold:

i) To give restriction results from \mathbb{R}^d to \mathbb{T}^d for Fourier multipliers and for associated maximal operators of weak type (and strong type) in any dimension and for $1 \leq p < \infty$. In particular, we shall prove the following.

Theorem 1.3. Let $1 \leq p < \infty$ and let w be a periodic weight on \mathbb{R}^d satisfying $w \in L^1(\mathbb{T}^d)$. Suppose that $\{m_j\}_j$ is a family of multipliers that are continuous functions satisfying that the associated maximal operator (see Definition 2.2 below) is bounded from $L^p(\mathbb{R}^d, w)$ to $L^{p,\infty}(\mathbb{R}^d, w)$ (or to $L^p(\mathbb{R}^d, w)$). Then the maximal operator associated to their restriction to the integers $\{m_j|_{\mathbb{Z}^d}\}_j$ (see Definition 3.1 below) is bounded from $L^p(\mathbb{T}^d, w)$ to $L^{p,\infty}(\mathbb{T}^d, w)$ (resp. to $L^p(\mathbb{T}^d, w)$) and its operator norm does not exceed c_p times the norm of the maximal operator associated to $\{m_j\}_j$, where c_p is a constant that depends only on p.

ii) K. De Leeuw in [8] and J. Jodeit in [12] also proved some restriction results for strong Fourier multipliers on $L^p(\mathbb{R}^d, w)$ with w a suitable weight in $A_p(\mathbb{R}^d)$ was given. Namely, [7, Corollary 4.13] states that if m is a continuous and bounded function in \mathbb{R}^d that is a Fourier multiplier on $L^p(\mathbb{R}^d, w)$ where $w = u \otimes v$ with $u \in A_p(\mathbb{R}^d)$, $v \in A_p(\mathbb{R}^d)$, then, for any $x \in \mathbb{R}^d$, the function $m(\xi, \cdot)$ is a Fourier multiplier on $L^p(\mathbb{R}^d, v)$. In this setting, we shall prove the following.

Theorem 1.4. Let $d = d_1 + d_2$, $1 \leq p < \infty$, $u \in A_p(\mathbb{R}^{d_1})$, $v \in A_p(\mathbb{R}^{d_2})$ and define $w(x, y) = u(x)v(y)$. Suppose that $\{m_j\}_j$ is a family of multipliers that are continuous functions satisfying that the associated maximal operator is bounded from $L^p(\mathbb{R}^d, w)$ to $L^{p,\infty}(\mathbb{R}^d, w)$ (or to $L^p(\mathbb{R}^d, w)$). Then, fixed $x \in \mathbb{R}^d$, the maximal operator associated to the family $\{m_j(\xi, \cdot)\}_j$ is bounded from $L^p(\mathbb{R}^{d_2}, v)$ to $L^{p,\infty}(\mathbb{R}^{d_2}, w)$ (resp. to $L^p(\mathbb{R}^{d_2}, v)$) and its operator norm does not exceed $c_{p,w}$ times the norm of the maximal operator associated to $\{m_j\}_j$, where $c_{p,w}$ is a constant that depends only on p, d and the A_p-constant of w.

We want to emphasize that the techniques developed in this paper are different from those in [14, 7] where duality properties of Lebesgue spaces are strongly used. Our approach allows us to also consider the case of maximal multipliers of weak type $(1, 1)$, and deal with the difficulties derived from the fact that $L^{1,\infty}$ is not a Banach space. The endpoint case $p = 1$ is the weighted analogue of the results in [2, 15].

2. Definitions and notation

In this section we present some basic definitions needed for our consideration. Let $0 < p < \infty$ and let (\mathcal{M}, μ) be a σ-finite measure space. The space $L^{p,\infty}(\mu)$ is defined by the quasinorm $\|f\|_{L^{p,\infty}(\mu)} = \sup_{s > 0} (\mu f(s))^{1/p}$, where $\mu f(s) = \mu\{x : |f(x)| > s\}$. It is known (see [10, p. 485]) that, for every $q < p$,

$$\|f\|_{L^{p,\infty}(\mu)} \leq \sup \|f\chi_E\|_{L^q(\mu)} \mu(E)^{1/p-1/q} \leq c_{p,q} \|f\|_{L^{p,\infty}(\mu)},$$

where the supremum is taken on the family of sets of finite measure and $c_{p,q} = \frac{p}{p-q}$. The finiteness of the middle expression is called Kolmogorov’s condition.
If \(\nu \) is a positive measure absolutely continuous with respect to \(\mu \) and \(w \) denotes the Radon-Nykodym derivative of \(\nu \) with respect to \(\mu \), we shall write \(L^p(\nu) \) for \(L^p(\nu) \). If any confusion can arise, we shall write \(L^p(\mathcal{M}, \mu) \) and \(L^{p, \infty}(\mathcal{M}, \mu) \) to indicate the underlying measure space \(\mathcal{M} \).

Let \(C_c^\infty(\mathbb{R}^d) \) and \(S(\mathbb{R}^d) \) denote the class of infinitely differentiable functions with compact support and the Schwartz class of test functions, respectively. As usual, \(\mathfrak{B}(X, Y) \) indicates the set of bounded operators on \(X \) into \(Y \) and \(\mathcal{B}(X) = \mathfrak{B}(X, X) \).

A weight on \(\mathbb{R}^d \) is a locally integrable function \(w : \mathbb{R}^d \to [0, \infty) \) such that 0 < \(w < \infty \) a.e.

Definition 2.1. We say that a weight \(w \) belongs to the class \(A_p(\mathbb{R}^d) \), and we write \(w \in A_p(\mathbb{R}^d) \) if

\[
[w]_{A_p} = \sup_Q \left(\frac{1}{|Q|} \int_Q w(x) \, dx \right)^{p-1} < \infty,
\]

for 1 < \(p < \infty \), and

\[
[w]_{A_1} = \sup_Q \left(\frac{1}{|Q|} \int_Q w(x) \, dx \right) \| w^{-1} \chi_Q \|_{\infty} < \infty,
\]

where the supremum is taken over the family of cubes \(Q \) with sides parallel to the coordinate axis. These quantities will be referred to as the \(A_p \)-constant of \(w \).

It is well known that, for 1 \(\leq p < \infty \) and \(w \in A_p(\mathbb{R}^d) \), \(S(\mathbb{R}^d) \subset L^p(\mathbb{R}^d, w) \) and \(C_c^\infty(\mathbb{R}^d) \) is dense in \(L^p(\mathbb{R}^d, w) \). We refer the reader to [10,11] for other properties and generalities of \(A_p \)-weights.

For any function \(f \), we shall denote by \(\hat{f} \) (resp. the inverse Fourier transform) of \(f \), whenever it is well defined.

Definition 2.2. Let 1 \(\leq p < \infty \). A function \(\mathbf{m} \in L^\infty(\mathbb{R}^d) \) is called a weak type multiplier on \(L^p(\mathbb{R}^d, w) \) (in symbols, \(\mathbf{m} \in M_p^{(w)}(\mathbb{R}^d) \)) if the mapping \(f \in S(\mathbb{R}^d) \mapsto (\mathbf{m} \hat{f})^\vee \) can be extended from \(S(\mathbb{R}^d) \) to a continuous linear mapping \(S_\mathbf{m} \) from \(L^p(\mathbb{R}^d, w) \) to \(L^{p, \infty}(\mathbb{R}^d, w) \). In this case we write

\[
\| \mathbf{m} \|_{M_p^{(w)}(\mathbb{R}^d)} = \| S_\mathbf{m} \|_{\mathfrak{B}(L^p(\mathbb{R}^d, w), L^{p, \infty}(\mathbb{R}^d, w))}.
\]

If \(S_\mathbf{m} \in \mathfrak{B} \left(L^p(\mathbb{R}^d, w) \right) \), we say that \(\mathbf{m} \) is a Fourier multiplier on \(L^p(\mathbb{R}^d, w) \) and write

\[
\| \mathbf{m} \|_{M_p,w(\mathbb{R}^d)} = \| S_\mathbf{m} \|_{\mathfrak{B}(L^p(\mathbb{R}^d, w))}.
\]

If \(\{ \mathbf{m}_j \}_j \) is a sequence in \(M_p^{(w)}(\mathbb{R}^d) \), we denote by \(\| \{ \mathbf{m}_j \}_j \|_{M_p^{(w)}(\mathbb{R}^d)} \) the norm of the operator defined for \(f \in S(\mathbb{R}^d) \) by

\[
S_{\{ \mathbf{m}_j \}_j} f(x) = \sup_j | S_{\mathbf{m}_j} f(x) |,
\]

provided it defines a continuous mapping from \(L^p(\mathbb{R}^d, w) \) to \(L^{p, \infty}(\mathbb{R}^d, w) \). If it extends to a bounded mapping on \(L^p(\mathbb{R}^d, w) \), we write its norm by \(\| \{ \mathbf{m}_j \}_j \|_{M_p,w(\mathbb{R}^d)} \).

We shall denote by \(\mathbb{T}^d \) the topological group \(\mathbb{R}^d/\mathbb{Z}^d \), which can be identified with the cube \([0, 1)^d \) or eventually with \([-1/2, 1/2)^d \) in \(\mathbb{R}^d \). Functions on \(\mathbb{T}^d \) will be identified with functions on \(\mathbb{R}^d \) which are 1-periodic in each variable. A function
f : \mathbb{T}^d \to \mathbb{C} such that for a finitely supported sequence \(\{a_k\}_{k \in \mathbb{Z}^d} \) of complex numbers written as

\[
f(x) = \sum_{k \in \mathbb{Z}^d} a_k e^{2\pi i k x}
\]
is called a trigonometric polynomial, and we write \(f \in P(\mathbb{T}^d) \). Let us recall that \(P(\mathbb{T}^d) \) is dense in \(L^p(\mathbb{T}^d, \mu) \) for any Radon measure \(\mu \) on \(\mathbb{T}^d \).

From now on, we work in the range

\[1 \leq p < \infty, \]

and \(w \) is a weight in \(\mathbb{R}^d \). Observe that if in addition \(w \) is 1-periodic, then \(w \in L^1(\mathbb{T}^d) \).

3. Restriction of Fourier multipliers from \(\mathbb{R}^d \) to \(\mathbb{T}^d \)

Definition 3.1. A function \(m \in \ell^\infty(\mathbb{Z}^d) \) is a weak type multiplier on \(L^p(\mathbb{T}^d, w) \) (in symbols, \(m \in M^{(w)}_{p,w}(\mathbb{T}^d) \)) if the mapping

\[
\sum_{k \in \mathbb{Z}^d} a_k e^{2\pi i k \theta} \in P(\mathbb{T}^d) \longrightarrow \sum_{k \in \mathbb{Z}^d} m(k) a_k e^{2\pi i k \theta}
\]
extends to a continuous operator \(T_m \in \mathcal{B}(L^p(\mathbb{T}^d, w), L^{p,\infty}(\mathbb{T}^d, w)) \). In this case,

\[
\|m\|_{M^{(w)}_{p,w}(\mathbb{T}^d)} = \|T_m\|_{\mathcal{B}(L^p(\mathbb{T}^d, w), L^{p,\infty}(\mathbb{T}^d, w))}.
\]

If \(T_m \in \mathcal{B}(L^p(\mathbb{T}^d, w)) \), \(m \) is said to be a multiplier on \(L^p(\mathbb{T}^d, w) \), we denote it by \(m \in M_{p,w}(\mathbb{T}^d) \) and

\[
\|m\|_{M_{p,w}(\mathbb{T}^d)} = \|T_m\|_{\mathcal{B}(L^p(\mathbb{T}^d, w))}.
\]

If \(\{m_j\}_j \) is a sequence in \(M^{(w)}_{p,w}(\mathbb{T}^d) \) we denote by \(\|\{m_j\}_j\|_{M^{(w)}_{p,w}(\mathbb{T}^d)} \) the norm of the operator defined for every \(f \in P(\mathbb{T}^d) \) by

\[
T_{\{m_j\}}^d f(x) = \sup_j |T_{m_j} f(x)|,
\]

provided it extends to a continuous mapping from \(L^p(\mathbb{T}^d, w) \) to \(L^{p,\infty}(\mathbb{T}^d, w) \). We shall write \(\|\{m_j\}_j\|_{M^{(w)}_{p,w}(\mathbb{T}^d)} \) in the case that it extends to a continuous operator on \(L^p(\mathbb{T}^d, w) \).

3.1. Restriction results for weak type maximal multipliers.

Theorem 3.2. Let \(w \) be 1-periodic and let \(\{m_j\}_j \in M^{(w)}_{p,w}(\mathbb{R}^d) \) satisfying that, for each \(j \), there exists \(K_j \in L^1(\mathbb{R}^d) \) with compact support such that \(\hat{K}_j(x) = m_j(x) \) for every \(x \in \mathbb{R}^d \). Then \(\{m_j|_{\mathbb{Z}^d}\}_j \in M^{(w)}_{p,w}(\mathbb{T}^d) \) and

\[
\|\{m_j|_{\mathbb{Z}^d}\}_j\|_{M^{(w)}_{p,w}(\mathbb{T}^d)} \leq c_p \|\{m_j\}_j\|_{M^{(w)}_{p,w}(\mathbb{R}^d)},
\]

where \(c_p \) depends only on \(p \).

Proof. Let \(\mathcal{M} = \|\{m_j\}_j\|_{M^{(w)}_{p,w}(\mathbb{R}^d)} \). Since convolution operators commute with translations, it follows that for every \(\theta \in [0,1)^d \) and every \(N \in \mathbb{N} \),

\[
\left\| \sup_{1 \leq j \leq N} |K_j * g| \right\|_{L^{p,\infty}(\mathbb{R}^d, w(-\theta))} \leq \mathcal{M} \|g\|_{L^p(\mathbb{R}^d, w(-\theta))}.
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Now, given \(f(\theta) = \sum_k a_k e^{2\pi i k \theta} \in P(T^d) \), let us consider
\[
\tilde{T}_{K_j} f(\theta) = \int_{\mathbb{R}^d} K_j(x) f(\theta - x) \, dx = \sum_k a_k \int_{\mathbb{R}^d} K_j(x) e^{2\pi i k(\theta - x)} \, dx
\]
that is, \(\tilde{T}_{K_j} \) coincides with the multiplier operator \(T_{m_{\pm}} \).

Let \(Q_r = (-r, r)^d \) with \(r > 0 \) such that \(\text{supp} \, K_j \subset Q_r \) for \(j = 1, \ldots, N \). Let \(q < p \), and for any measurable \(E \subset [0, 1)^d \), let \(\tilde{E} = \bigcup_{k \in \mathbb{Z}^d} E + k \) be its periodic extension. Set \(E_\theta = \{ x \in \mathbb{R}^d : x + \theta \in \tilde{E} \} \) with \(\theta \in \mathbb{T}^d \) and \(R_x f(\theta) = f(\theta + x) \).

Then, by translation invariance, we have that, for every \(x \in \mathbb{R}^d
\]
\[
(2.2) \quad \left\| \sup_{1 \leq j \leq N} \left| \tilde{T}_{K_j} f \right| \chi_E \right\|_{L^q(\mathbb{T}^d, w)}^q = \int_{\mathbb{T}^d} \sup_{1 \leq j \leq N} \left| R_x \tilde{T}_{K_j} f(\theta) \right|^q w(x + \theta) \chi_E(x + \theta) \, d\theta.
\]

Therefore, for every \(s > 0 \),
\[
\left\| \sup_{1 \leq j \leq N} \left| \tilde{T}_{K_j} f \right| \chi_E \right\|_{L^q(\mathbb{T}^d, w)}^q \leq \frac{1}{(2s)^d} \int_{\mathbb{T}^d} \int_{Q_s} \sup_{1 \leq j \leq N} \left| R_x \tilde{T}_{K_j} f(\theta) \right|^q w(x + \theta) \chi_E(x + \theta) \, d\theta \, dx.
\]

Now, using that \(\text{supp} \, K_j \subset Q_r \) for \(j = 1, \ldots, N \), one can easily see that, if \(x \in Q_s \),
\[
R_x \tilde{T}_{K_j} f(\theta) = B_{K_j} \left(R_{x-} f(\theta) \chi_{Q_r} \right)(x),
\]
where \(B_{K_j} (h)(x) = (K_j * h)(x) \), and hence,
\[
\left\| \sup_{1 \leq j \leq N} \left| \tilde{T}_{K_j} f \right| \chi_E \right\|_{L^q(\mathbb{T}^d, w)}^q \leq \frac{1}{(2s)^d} \int_{\mathbb{T}^d} \int_{Q_s} \sup_{1 \leq j \leq N} \left| B_{K_j} \left(R_{x-} f(\theta) \chi_{Q_r} \right) \right|^q (x) \, d\theta \, dx.
\]

By (2.3) and (3.1), the term inside curly brackets is bounded by
\[
(c_{p,q} \mathcal{N})^q \left\{ \int_{Q_{r+s}} |R_x f(\theta)|^p w(x + \theta) \, dx \right\} \frac{2}{p} \left\{ \int_{E_\theta \cap Q_s} w(x + \theta) \, dx \right\}^{1 - \frac{2}{s}}.
\]

Also, using Hölder’s inequality, it follows that
\[
\left\| \sup_{1 \leq j \leq N} \left| \tilde{T}_{K_j} f \right| \chi_E \right\|_{L^q(\mathbb{T}^d, w)}^q \leq \frac{c_{p,q} \mathcal{N}^q}{(2s)^d} \left\{ \int_{\mathbb{T}^d} \int_{Q_{r+s}} |R_x f(\theta)|^p w(x + \theta) \, dt \, d\theta \right\} \frac{2}{p} \left\{ \int_{\mathbb{T}^d} \int_{Q_s \cap E_\theta} w(x + \theta) \, dx \, d\theta \right\}^{1 - \frac{2}{s}}
\]
\[
\leq \frac{c_{p,q} \mathcal{N}^q}{(2s)^d} (2(r + s))^{d(1 - \frac{2}{p})} w(E)^{1 - \frac{2}{s}} \| f \|_{L^p(\mathbb{T}^d, w)}^q
\]
\[
\leq \frac{c_{p,q} \mathcal{N}^q}{s} \left(\frac{r + s}{s} \right)^{\frac{d(1 - \frac{2}{p})}{p}} w(E)^{1 - \frac{2}{s}} \| f \|_{L^p(\mathbb{T}^d, w)}^q.
\]
Thus, taking $s \to +\infty$, and using Kolmogorov’s condition \[21\], we obtain that
\[
\left\| \sup_{1 \leq j \leq N} \left| \hat{T}_{K,j} f \right| \right\|_{L^{p,(\mathbb{T}^d,w)}} \leq c_{p,q} \| f \|_{L^p(\mathbb{T}^d,w)} .
\]
Now, considering $c_p = \inf_q c_{p,q}$, the result easily follows by Fatou’s Lemma and the density of $P(\mathbb{T}^d)$ in $L^p(\mathbb{T}^d,w)$. \square

The next step is to weaken the hypothesis assumed on m_j in the previous theorem as is done both in [4] and [1]. As usually happens, this is the technical part of the work.

Definition 3.3. A bounded function m defined in \mathbb{R}^d is **normalized** if for any $x \in \mathbb{R}^d$,
\[
\lim_{n} \tilde{\varphi}_n * m(x) = m(x),
\]
where $\varphi_n(x) = \varphi(x/n)$, $\varphi \in C_c^\infty(\mathbb{R}^d)$, $\varphi \geq 0$ and $\| \varphi \|_1 = 1$.

It is easy to see that $\lim_n \tilde{\varphi}_n * m(x) = m(x)$ for every Lebesgue point x of m. In particular, any continuous and bounded function is normalized.

In order to extend Theorem 3.2 to the class of normalized multipliers, we shall need some previous lemmas. The following one is a direct consequence of the proof of [15] Lemma 2.6] for $G = \mathbb{R}^d$.

Lemma 3.4. Let $J \in \mathbb{N}$ and let $\{ m_j \}_{j=1}^J$ be a family of $L^\infty(\mathbb{R}^d)$ functions. For $f \in S(\mathbb{R}^d)$, $j = 1, \ldots, J$ and $x \in \mathbb{R}^d$, let
\[
F_{j,x}(\xi) = S_{m_j}(e^{-2\pi i \xi \cdot f})(x), \quad \xi \in \mathbb{R}^d.
\]
Let K be a compact set. Then, for each $k \in \mathbb{N} \setminus \{0\}$, there exists a finite family $\{ V_k \}_{l=1}^{L_k}$ of pairwise disjoint measurable sets in \mathbb{R}^d such that

1. $K \subset \bigcup_{l=1}^{L_k} V_k^l$,
2. if $l = 1, \ldots, L_k$ and $\xi, \zeta \in V_k^l$, then
\[
|F_{j,x}(\xi) - F_{j,x}(\zeta)| \leq 1/k,
\]
uniformly on $j \in \{1, \ldots, J\}$ and $x \in \mathbb{R}$.

Another key ingredient is the following version of Marcinkiewicz-Zygmund’s inequality, whose proof is analogous to that given in [10] Theorem V.2.9 for $p = q = 1$ for linear operators.

Theorem 3.5. Let $\{ T_j \}_{j}$ be a countable family of linear operators such that
\[
\left\| \sup_j \left| T_j f \right| \right\|_{L^{1,\infty}(\mathbb{R}^d,w)} \leq \| \{ T_j \} \| \| f \|_{L^1(\mathbb{R}^d,w)} .
\]
Then
\[
\left\| \sup_j \left(\sum_l |T_j f_l|^2 \right)^{1/2} \right\|_{L^{1,\infty}(\mathbb{R}^d,w)} \leq c_1 \| \{ T_j \} \| \left(\sum_l |f_l|^2 \right)^{1/2} \|_{L^1(\mathbb{R}^d,w)} ,
\]
where
\[
c_1 := \inf_{0 < r < 1} \frac{\sqrt{\pi}}{2 \left((1 - r) \Gamma \left(1 + \frac{r}{2} \right) \right)^{1/r} .}
\]

(3.3)
For $p > 1$, the next lemma is an immediate consequence of Minkowskii’s inequality, as $L^{p,\infty}$ is normable, but for $p = 1$ the convexity of the space $L^{1,\infty}$ fails. Similar results in the unweighted setting are given by [3, Lemma 2.1] and [4, Theorem 1.2].

Lemma 3.6. Let $\varphi \in L^1(\mathbb{R}^d)$ and $\{m_j\}_j \in M_{p,w}^{(m)}(\mathbb{R}^d)$. Then $\{\varphi \ast m_j\}_j \in M_{p,w}^{(m)}(\mathbb{R}^d)$ and

\[
\|\{\varphi \ast m_j\}_j\|_{M_{p,w}^{(m)}(\mathbb{R}^d)} \leq c_p \|\varphi\|_{L^1(\mathbb{R}^d)} \|\{m_j\}_j\|_{M_{p,w}^{(m)}(\mathbb{R}^d)},
\]

where $c_p = p'$ if $p > 1$ and c_1 is the constant given in (3.3).

Proof. We shall only prove the case $p = 1$. Without loss of generality, we can assume that $\{m_j\}_j$ is a finite family of multipliers of cardinality, say $J \in \mathbb{N}$. For $g \in C_0^\infty(\mathbb{R}^d)$,

\[
\int (\varphi \ast m_j)(\xi)\hat{g}(\xi)e^{2\pi i\xi x} \, d\xi = \int \varphi(y)e^{2\pi i xy}S_{m_j}(e^{-2\pi iy}g)(x) \, dy.
\]

Hence,

\[
|S_{\varphi \ast m_j}g(x)| \leq \int |\varphi(y)||S_{m_j}(e^{-2\pi iy}g)(x)| \, dy,
\]

and thus

\[
\sup_{1 \leq j \leq J} |S_{\varphi \ast m_j}g(x)| \leq \int |\varphi(y)| \sup_{1 \leq j \leq J} |S_{m_j}(e^{-2\pi iy}g)(x)| \, dy.
\]

Let us first assume that $\varphi \in L^1(\mathbb{R}^d)$ is supported on a compact set K. For each $k \geq 1$ let $\{V_k^l\}_{l=1}^{I_k}$ be the family of pairwise disjoint sets given by Lemma 3.3 and for each l, select $y_k^l \in V_k^l$. Then, for every $y \in K$ and any $k \geq 1$, there exists a unique $l \in \{1, \ldots, I_k\}$ such that $y \in V_k^l$, and hence

\[
|S_{m_j}(e^{-2\pi iy}g)(x) - S_{m_j}(e^{-2\pi iy}g)(x)| \leq \frac{1}{k},
\]

uniformly on $j = 1, \ldots, J$ and $x \in \mathbb{R}^d$. It follows that for every $x \in \mathbb{R}^d$, any $j \in \{1, \ldots, J\}$ and all $y \in K$,

\[
\lim_{k \to \infty} \sum_{l=1}^{I_k} S_{m_j}(e^{-2\pi iy_k^l}g)(x) \chi_{V_k^l}(y) = S_{m_j}(e^{-2\pi iy}g)(x).
\]

Then, by Fatou’s Lemma on (5.5),

\[
\sup_{1 \leq j \leq J} |S_{\varphi \ast m_j}g(x)| \leq \liminf_{k \to \infty} \sup_{1 \leq j \leq J} \left(\frac{1}{k} \sum_{l=1}^{I_k} \left| S_{m_j}(e^{-2\pi iy_k^l}g)(x) \right| \lambda_k^l \right),
\]

where $\lambda_k^l = \int_{V_k^l} |\varphi(y)| \, dy$. Observe that the term inside brackets is less than or equal to

\[
\|\varphi\|_{L^1(\mathbb{R}^d)}^{1/2} \left(\sum_{l=1}^{I_k} \left| S_{m_j}(\sqrt{\lambda_k^l}e^{-2\pi iy_k^l}g)(x) \right|^2 \right)^{1/2},
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
where we have used that $\sum_{k=1}^{n} \lambda_k = \int g_k \, dy = \| \varphi \|_{L^1(\mathbb{R}^d)}$. Then,

$$\left\| \sup_{1 \leq j \leq J} |S_{\varphi+\mu_j}g| \right\|_{L^1(\mathbb{R}^d)} \leq \| \varphi \|_{L^1(\mathbb{R}^d)}^2 \left(\sum_{j=1}^{J} \left| S_{\mu_j} \left(\sqrt{\lambda_k^2 e^{-2\pi iy_k^j} g} \right)(x) \right| \right)^{1/2} \left\| \sup_{1 \leq j \leq J} \left(\sum_{i=1}^{I_k} \left| S_{\mu_i} \left(\sqrt{\lambda_k^2 e^{-2\pi iy_k^j} g} \right)(x) \right| \right)^{1/2} \right\|_{L^1(\mathbb{R}^d)}.$$

Applying Theorem 3.3 with the family of operators $\{ S_{\mu_i} \}_j$ to the functions $f_i = \sqrt{\lambda_k^2 e^{-2\pi iy_k^j} g}$, we obtain that

$$\left\| \sup_{1 \leq j \leq J} \left(\sum_{i=1}^{I_k} \left| S_{\mu_i} \left(\sqrt{\lambda_k^2 e^{-2\pi iy_k^j} g} \right)(x) \right| \right)^{1/2} \right\|_{L^1(\mathbb{R}^d)} \leq c_1 \left\| \{ \mu_i \}_j \right\|_{M^{(m)}_1(\mathbb{R}^d)} \left\| \{ S_{\mu_i} \}_j \right\|_{L^1(\mathbb{R}^d)} \left\| g \right\|_{L^1(\mathbb{R}^d)}.$$

Therefore,

\begin{equation}
\left\| \sup_{1 \leq j \leq J} |S_{\varphi+\mu_j}g| \right\|_{L^1(\mathbb{R}^d)} \leq c_1 \left\| \varphi \right\|_{L^1(\mathbb{R}^d)} \left\| \{ \mu_i \}_j \right\|_{M^{(m)}_1(\mathbb{R}^d)} \left\| g \right\|_{L^1(\mathbb{R}^d)}.
\end{equation}

In the case that φ is not compactly supported, considering $\varphi_n = \varphi \chi_{B(0,n)}$, we can write

$$\sup_{1 \leq j \leq J} |S_{\varphi+\mu_j}g(x)| \leq \lim_{n} \int |\varphi_n(y)| \sup_{1 \leq j \leq J} |S_{\mu_j} (e^{-2\pi iy_k^j} g)(x)| \, dy,$$

and using the previous argument we obtain that

$$\left\| \sup_{1 \leq j \leq J} |S_{\varphi+\mu_j}g| \right\|_{L^1(\mathbb{R}^d)} \leq c_1 \lim_{n} \left\| \varphi_n \right\|_{L^1(\mathbb{R}^d)} \left\| \{ \mu_i \}_j \right\|_{M^{(m)}_1(\mathbb{R}^d)} \left\| g \right\|_{L^1(\mathbb{R}^d)},$$

from where it follows that (3.6) holds for any $\varphi \in L^1(\mathbb{R}^d)$. The result now follows by the density of $C_c^\infty(\mathbb{R}^d)$ in $L^p(\mathbb{R}^d)$.

Lemma 3.7. Let $w \in C(\mathbb{T}^d)$ such that $\inf_{x \in \mathbb{T}^d} w(x) > 0$. Consider $h \in C_c^\infty(\mathbb{R}^d)$ satisfying $0 \leq h \leq 1$ and $\int_{\mathbb{R}^d} h = 1$ and define $h_n(x) = n^d h(nx)$. Then,

1. There exists $n_0 = n_0(w) \in \mathbb{N}$ such that, for any $p \in [1, \infty)$,

 $$\sup_{n \geq n_0} \left\| \hat{h}_n \right\|_{M_{p,w}(\mathbb{R}^d)} \leq 2^{1/p}. $$

2. $\sup_n \left\| \hat{h}_n \right\|_{L^\infty(\mathbb{R}^d)} \leq 1$.

3. For every $\xi \in \mathbb{R}^d$, $\lim_n \hat{h}_n(\xi) = 1$.

Proof. Since $\left\| h_n \right\|_{L^1} = 1$, it follows that $\left\| \hat{h}_n \right\|_{\infty} \leq 1$. On the other hand, for every $\xi \in \mathbb{R}^d$ and for every $\epsilon > 0$ there exists n_0 such that for all $|x| < \frac{1}{n_0}$, $\left| 1 - e^{2\pi i x \xi} \right| < \epsilon$.
Hence, for every $n \geq n_0$,

$$|1 - \hat{h}_n(\xi)| \leq \int h_n(x) \left| 1 - e^{2\pi i x \xi} \right| \, dx.$$

Then, it follows that $\hat{h}_n \to 1$ pointwise. It remains to show that $\|\hat{h}_n\|_{L^p(w(\mathbb{R}^d))}$ are uniformly bounded on n.

Observe that $\|f\|_{L^\infty(w)} = \|f\|_{L^\infty}$ and hence, for any $n \geq 1$,

$$\|h_n * f\|_{L^\infty(\mathbb{R}^d,w)} \leq \|f\|_{L^\infty(\mathbb{R}^d,w)}.$$

Let $\delta = \inf_{x \in \mathbb{T}^d} w(x) > 0$. Since $w \in C(\mathbb{T}^d)$, there exists $n_0 = n_0(\delta)$ such that, for any $n \geq n_0$, for any x and any $y \in \text{supp} h_n$,

$$|w(x) - w(x - y)| \leq \delta,$$

which implies that, for any $x \in \mathbb{T}^d$,

$$h_n * w(x) \leq \delta + w(x) \leq 2w(x).$$

Then, for $n \geq n_0$,

$$\|h_n * f\|_{L^1(\mathbb{R}^d,w)} \leq \int_{\mathbb{R}^d} |f(y)| h_n * w(y) \, dy \leq 2 \|f\|_{L^1(\mathbb{R}^d,w)}.$$

In other words, we have seen that for $n \geq n_0$ the linear operator defined by $T_n f = h_n * f$ is uniformly bounded on $L^1(\mathbb{R}^d,w)$ and $L^\infty(\mathbb{R}^d,w)$ with norm respectively bounded by 2 and 1. Riesz-Thorin’s Theorem implies the result. \hfill \Box

Lemma 3.8. Let w be 1-periodic. If $g \in C_c(\mathbb{R}^d)$ is nonnegative, $\int_{\mathbb{R}^d} g = 1$ and $\text{supp} g \subset [-1/2,1/2]^d$, then $\inf_{x \in \mathbb{R}^d} g * w(x) > 0$.

Proof. Clearly $g * w \in C(\mathbb{T}^d)$, and hence there exists $x_0 \in [-1/2,1/2]^d$ such that $\inf_{x \in \mathbb{R}^d} g * w(x) = \min_{|x| < 1/2} g * w(x) = g * w(x_0)$. Since $g \in C_c(\mathbb{R}^d)$, there exists a set of positive Lebesgue measure Q where $g(y) > 0$ for all $y \in Q$. Thus if $0 = g * w(x_0) = \int g(y) w(x_0 - y) \, dy$, then $g(y) w(x_0 - y) = 0$ a.e. $y \in Q$, which implies that $w(z) = 0$ a.e. $z \in x_0 - Q$, but this contradicts the fact that the set \{x : w(x) = 0\} is null. \hfill \Box

Lemma 3.9. Let T be any bounded operator from $L^p(\mathbb{R}^d,w)$ to $L^{p,\infty}(\mathbb{R}^d,w)$ that commutes with translations. Then, for any nonnegative function $g \in C_c(\mathbb{R}^d)$, T is bounded from $L^p(\mathbb{R}^d,g * w)$ to $L^{p,\infty}(\mathbb{R}^d,g * w)$ and

$$\|T\|_{B(L^p(\mathbb{R}^d,g * w),L^{p,\infty}(\mathbb{R}^d,g * w))} \leq c_p \|T\|_{B(L^p(\mathbb{R}^d,w),L^{p,\infty}(\mathbb{R}^d,w))},$$

where $c_p = \inf_{q < p} \left(\frac{p}{p-q} \right)^\frac{1}{2}$.\hfill \Box

Proof. Let E be any measurable set in \mathbb{R}^d such that $0 < g * w(E) < +\infty$. Then, for any $q < p$,

$$\|Tf \chi_E\|_{L^q(\mathbb{R}^d,g * w)}^q = \int_E |Tf(x)|^q g * w(x) \, dx = \int g(y) \int_E |Tf(x)|^q w(x - y) \, dx \, dy = \int g(y) \int_{E-y} |Tf_y(x)|^q w(x) \, dx \, dy,$$
with \(f_y(z) = f(z + y) \). Thus, by the boundedness hypothesis, Kolmogorov’s condition and Hölder’s inequality,

\[
\| T f \chi_E \|_{L^q(\mathbb{R}^d, g * w)} \leq \| T \|_p \left(\int |f_y(x)|^q w(x) \, dx \right)^{1/p} dy
\]

\[
\leq c_{p,q}^q \| T \|_p \| (g * w(E)) \|_{L^q(\mathbb{R}^d, g * w)},
\]

where \(c_{p,q}^q = p/(p-q) \). Then, the result follows by Kolmogorov’s condition and by taking the infimum for \(q < p \).

Theorem 3.10. Let \(w \) be a 1-periodic weight on \(\mathbb{R}^d \). Suppose that \(\{m_j\}_j \) are normalized functions and \(\{m_j\}_j \in M_{p,w}(\mathbb{R}^d) \). Then \(\{m_j\}^J \in M_{p,w}(\mathbb{T}^d) \) and

\[
\left\| \{m_j\}^J \right\|_{M_{p,w}(\mathbb{T}^d)} \leq c_p \left\| \{m_j\}_j \right\|_{M_{p,w}(\mathbb{R}^d)},
\]

where \(c_p \) depends only on \(p \).

Proof. Let \(\{g_t\}_t \) be a family of nonnegative functions in \(C^\infty_c(\mathbb{R}^d) \), supported in \([-1/2,1/2]^d \) such that it is an approximation of the identity in \(L^1(\mathbb{T}^d) \). We can also assume that \(\lim_{t \to 0} g_t * w(x) = w(x) \) a.e. \(x \in [-1/2,1/2]^d \).

For a fixed \(l \in \mathbb{N} \), by Lemma 3.9

\[
\left\| \{m_j\}_j \right\|_{M_{p_2,w}(\mathbb{R}^d)} \leq c_p \left\| \{m_j\}_j \right\|_{M_{p_2,w}(\mathbb{R}^d)}.
\]

By Lemma 3.8 it follows that for any \(h \in C^\infty_c(\mathbb{R}^d) \) such that \(0 \leq h \leq 1 \) and that \(\int_{\mathbb{R}^d} h = 1 \), there exists an \(n_t \) such that, for any \(n \geq n_t \), the conclusions of Lemma 3.7 hold for the periodic weight \(g_t * w \).

Consider, for \(j, n \in \mathbb{N} \),

\[
m_{j,n}(\xi) = \widehat{K_{j,n}}(\xi) = (\varphi_n * m_j)(\xi) \widehat{h_n}(\xi),
\]

where \(\varphi_n \) are the functions given by the normalized condition. First observe that \(K_{j,n} \in \mathcal{S}(\mathbb{R}^d) \) and hence \(K_{j,n} \in \mathcal{S}(\mathbb{R}^d) \). Moreover, since

\[
K_{j,n}(x) = (\varphi_n m_j)(h_n(x - \cdot)) = m_j(\varphi_n(\cdot) h_n(x - \cdot)),
\]

and \(\varphi_n, h_n \) are compactly supported, it follows that \(K_{j,n} \in C^\infty_c(\mathbb{R}^d) \). On the other hand, since \(m_j \) is normalized and \(\widehat{h_n} \to 1 \), it holds that for every \(\xi \in \mathbb{R}^d \),

\[
\lim_n \widehat{K_{j,n}}(\xi) = m_j(\xi).
\]

Since \(\| \widehat{h_n} \|_{L^\infty(\mathbb{R}^d)} \leq 1 \) and \(\| \varphi_n \|_{L^1(\mathbb{R}^d)} \leq 1 \), then \(\| m_{j,n} \|_{L^\infty(\mathbb{R}^d)} \leq \| m_j \|_{L^\infty(\mathbb{R}^d)} \).

Let us fix \(J \in \mathbb{N} \). Since for any \(f \in C^\infty_c(\mathbb{R}) \)

\[
K_{j,n} * f = T_{\varphi_n * m_j}(h_n * f),
\]

it follows that for every \(n \geq n_t \),

\[
\left\| \sup_{1 \leq j \leq J} |K_{j,n} * f| \right\|_{L^p(\mathbb{R}^d, g_i * w)} \leq \left\| \{\varphi_n * m_j\}_J \right\|_{M_{p,w}(\mathbb{R}^d)} \| h_n * f \|_{L^p(\mathbb{R}^d, g_i * w)}
\]

\[
\leq c_p 2^{\frac{3p}{2}} \left\| \{m_j\}_J \right\|_{M_{p,w}(\mathbb{R}^d)} \| f \|_{L^p(\mathbb{R}^d, g_i * w)},
\]
where we have used that, by Lemma 3.6
\[
\left\| \{\hat{f}_n \ast m_j\}_j \right\|_{M^{(m)}_{p,q_i,w}(\mathbb{R}^d)} \leq c_p \left\| \{m_j\}_j \right\|_{M^{(m)}_{p,q_i,w}(\mathbb{R}^d)} \leq c_p^2 \left\| \{m_j\}_j \right\|_{M^{(m)}_{p,w}(\mathbb{R}^d)}.
\]
We can now apply Theorem 3.2 to deduce that for any \(n \geq n_1\),
\[
\left\| \{m_{j,n}\}_{j=1}^J \right\|_{M^{(m)}_{p,q_i,w}(\mathbb{T}^d)} \leq 2^{ \frac{1}{p} c_p^2 } \left\| \{m_j\}_j \right\|_{M^{(m)}_{p,w}(\mathbb{R}^d)}.
\]
Since, for any \(f \in P(\mathbb{T}^d)\),
\[
\lim_n S_{m_{j,n}} f(s) = \lim_n \sum_{k \in \mathbb{Z}^d} m_{j,n}(k) \hat{f}(k)e^{2\pi i k s} = \sum_{k \in \mathbb{Z}^d} m_j(k) \hat{f}(k)e^{2\pi i k s} = S_m f(s),
\]
by Fatou’s Lemma, the following inequality holds:
\[
\left\| \sup_{1 \leq j \leq J} \left| S_{m_j} f \right| \right\|_{L^p(\mathbb{T}^d, gl^{*}w)} \leq \liminf_n \left\| \sup_{1 \leq j \leq J} \left| S_{m_{j,n}} f \right| \right\|_{L^p(\mathbb{T}^d, gl^{*}w)} \leq 2^{ \frac{1}{p} c_p^2 } \left\| \{m_j\}_j \right\|_{M^{(m)}_{p,w}(\mathbb{R}^d)} \|f\|_{L^p(\mathbb{T}^d, gl^{*}w)},
\]
which implies
\[
\left\| \sup_{1 \leq j} \left| S_{m_j} f \right| \right\|_{L^p(\mathbb{T}^d, w)} \leq 2^{ \frac{1}{p} c_p^2 } \left\| \{m_j\}_j \right\|_{M^{(m)}_{p,w}(\mathbb{R}^d)} \liminf_{l \to \infty} \|f\|_{L^p(\mathbb{T}^d, gl^{*}w)}.
\]
Observe that
\[
\|f\|_{L^p(\mathbb{T}^d, gl^{*}w)} \leq \|f\|_{L^\infty(\mathbb{T}^d)} \|gl^{*}w - w\|_{L^1(\mathbb{T}^d)} + \|f\|_{L^p(\mathbb{T}^d, w)},
\]
and since \(\lim_l \|gl^{*}w - w\|_{L^1(\mathbb{T}^d)} = 0\), it follows that
\[
\left\| \sup_{1 \leq j} \left| S_{m_j} f \right| \right\|_{L^p(\mathbb{T}^d, w)} \leq 2^{ \frac{1}{p} c_p^2 } \|f\|_{L^p(\mathbb{T}^d, w)}.
\]
The result follows by the density of \(P(\mathbb{T}^d)\) in \(L^p(\mathbb{T}^d, w)\). \(\square\)

With minor modifications in the proofs, the analogous result for operators of strong type can be proved. In the particular case of a single multiplier, we recover K. Andersen and P. Mohanty’s [11, Theorem 1.1].

Theorem 3.11. Let \(w\) be 1-periodic. Suppose that \(\{m_j\}_j \subset M_{p,w}(\mathbb{R}^d)\) and that they are normalized functions. Then \(\{m_{j,z} \}_{j} \subset M_{p,w}(\mathbb{T}^d)\) and
\[
\left\| \{m_{j} \}_{j} \right\|_{M_{p,w}(\mathbb{T}^d)} \leq 2^{1/p} \left\| \{m_j\}_j \right\|_{M_{p,w}(\mathbb{R}^d)}.
\]

3.2. An improvement for nonperiodic weights. A similar approach to that in the previous section allows us to obtain a more general version of Theorem 3.11 (and also of Theorem 3.11) for a class of nonnecessarily periodic weights which includes those in \(A_p(\mathbb{T}^d)\).

Definition 3.12. We say that a weight \(v \in W(\mathbb{R}^d)\) if it satisfies the following conditions:

i) For every \(x \in \mathbb{R}^d, \theta \in [0,1)^d\),
\[
\frac{1}{\zeta} \leq \frac{v(x)}{v(x + \theta)} \leq \zeta.
\]
Theorem 3.13. Let u be a periodic weight in \mathbb{R}^d, let $v \in W$ and set $w = uv$. Assume that $\{m_j\}_j \in M_p^{(m)}(\mathbb{R}^d)$ (respectively $M_{p,w}(\mathbb{R}^d)$) and that they are normalized functions in \mathbb{R}^d. Then $\{m_j(x)\}_j \in M_p^{(m)}(\mathbb{T}^d)$ (respectively $M_{p,w}(\mathbb{T}^d)$) and

$$
\left\| \left\{ m_j \right\}_{\mathbb{T}^d} \right\|_{M_p^{(m)}(\mathbb{T}^d)} \leq \|m\|_{M_p^{(m)}(\mathbb{R}^d)}.
$$

(respectively replacing $M_p^{(m)}$ with $M_{p,w}$ in the previous inequality), where $c_{p,w}$ and c_p depend only on p.

Proof: We shall prove the weak case. The proof for the strong case is similar and we leave the details to the reader. Assume first that $\{m_j\}_j$ is a finite sequence. The argument is similar to that for Theorem 3.2 and we shall sketch the major changes to be done in the proof.

Let $\mathfrak{N} = \left\| \left\{ m_j \right\}_{\mathbb{R}^d} \right\|_{M_p^{(m)}(\mathbb{R}^d)}$. Since $v \in W$,

$$1 \frac{u(x + \theta)}{v(x + \theta)} \leq u(x + \theta)v(x) \leq \zeta(u(x + \theta)).$$

By (3.7), for every $f \in P(\mathbb{T})$ and every measurable set $E \subset \mathbb{T}$,

$$
\left\| \sup_{1 \leq j \leq N} |T_K f| \chi_E \right\|_{L^q(\mathbb{T}^d, u)}^q
= \frac{1}{v(Q_s)} \int_{Q_s} \left\{ \sup_{1 \leq j \leq N} |R_{x}T_K f| \right\}^q u(x + \theta)v(x) \chi_E(x + \theta) d\theta dx
\leq \frac{\zeta}{v(Q_s)} \int_{\mathbb{T}^d} \left\{ \sup_{1 \leq j \leq N} |B_K (R_{x}f \chi_{Q_s} \chi_{\tilde{E}})(x)| \right\}^q w(x + \theta) dx d\theta,
$$

where $E_0 = \{ x \in \mathbb{R}^d : x + \theta \in \tilde{E} \}$ and \tilde{E} is the periodic extension of E. By (2.1) and (5.1), the term inside curly brackets is bounded by

$$(c_{p,q} \mathfrak{N})^q \left\{ \int_{Q_s} |R_{x}f| |P| w(x + \theta) dx \right\}^\frac{p}{q} \left\{ \int_{E_0 \cap Q_s} w(x + \theta) dx \right\}^{1 - \frac{p}{q}}.$$

Hence, by Hölder’s inequality, it follows that

$$
\left\| \sup_{1 \leq j \leq N} |T_K f| \chi_E \right\|_{L^q(\mathbb{T}^d, u)}^q
\leq c_{p,q} \mathfrak{N} \zeta \left[\int_{\mathbb{T}^d} \int_{Q_s} |R_{x}f| |P| w(x + \theta) dtd\theta \right]^\frac{p}{q} \left[\int_{\mathbb{T}^d} \int_{Q_s \cap E_0} w(x + \theta) dx d\theta \right]^{1 - \frac{p}{q}}.
$$

By (3.7), the first term is bounded by $[\zeta(u(Q_{r+s}))]^\frac{p}{q} \|f\|_{L^p(\mathbb{T}, u)}^q$, and the second one by $[\zeta(u(Q_s))u(E)]^{1 - \frac{p}{q}}$. Hence,

$$u(E)^{\frac{p}{q} - 1} \left\| \sup_{1 \leq j \leq N} |T_K f| \chi_E \right\|_{L^q(\mathbb{T}^d, u)}^q \leq c_{p,q} \mathfrak{N} \zeta^2 \left(\frac{v(Q_{r+s})}{v(Q_s)} \right)^\frac{p}{q} \|f\|_{L^p(\mathbb{T}^d, u)}^q.$$
Letting \(s \to \infty \) and using \((2.1) \) we obtain that
\[
\left\| \sup_{1 \leq j \leq N} |T_{K_j}f| \right\|_{L^p(T^d, u)} \leq c_{p,v} \zeta^2 m f\|_{L^p(T^d, u)}.
\]

Considering \(c_{p,v} = \inf_{q < p} \zeta^{2/q} c_{p,q,v} \), the result easily follows by Fatou’s Lemma and the density of \(P(T^d) \) in \(L^p(T^d, u) \).

4. Restriction of Fourier multipliers to lower dimension

Restriction of Fourier multipliers of strong type to a lower dimensional space was studied in \([7, \text{Corollary 4.13}]\). Here we shall give a weak counterpart to that result.

We have to mention here that in this section we work with \(A_p(\mathbb{R}^d) \) weights mainly because, under this condition, we can prove the analogue to Lemma 3.7 (see Lemma 4.2 below). Other conditions that we can assume in \(w \) in order to have an approximation lemma are, for example, that \(w \) is uniformly continuous and \(\inf_{x \in \mathbb{R}^d} w(x) > 0 \). In this case the proof is a simple modification of the proof of Lemma 3.7.

Lemma 4.1.
If \(w \in \bigcup_{1 \leq p < \infty} A_p(\mathbb{R}^d) \), then, for any \(s > 0 \), \(\lim_{s \to \infty} \frac{w(Q_{r+s})}{w(Q_r)} = 1 \).

Proof. By the \(A_\infty \)-condition \([10, \text{Theorem IV.2.9}]\), there exist \(\delta, C > 0 \) such that
\[
0 \leq 1 - \frac{w(Q_s)}{w(Q_{r+s})} = \frac{w(Q_{r+s} \setminus Q_s)}{w(Q_{r+s})} \leq C \left(1 - \frac{s^d}{(r+s)^d} \right)^\delta,
\]
from where the result easily follows. \(\square \)

Lemma 4.2.
If \(w \in A_p(\mathbb{R}^d) \), there exists \(\{h_n\}_n \subset C_c^\infty(\mathbb{R}^d) \), such that
1. \(\mathbf{g}_{p,w} := \sup_n |\hat{h}_n|_{M_{p,w}(\mathbb{R}^d)} < \infty \),
2. \(\sup_n \|\hat{h}_n\|_{L^\infty(\mathbb{R}^d)} \leq 1 \),
3. for every \(\xi \in \mathbb{R}^d \), \(\lim_n \hat{h}_n(\xi) = 1 \).

Proof. Properties (2) and (3) are proved as in Lemma 3.7. To prove (1), we first observe that clearly
\[
\sup_n |h_n * f|(x) \lesssim Mf(x)
\]
and hence the case \(p > 1 \) is trivial.

To prove the case \(p = 1 \), fix \(\beta \in \mathbb{N}, \beta > d \). Then,
\[
\|h_n * f\|_{L^1(w)} \leq \int |f(y)| \int h_n(x - y)w(x) \, dx \, dy.
\]

For a fixed \(y \in \mathbb{R}^d \) and \(n > 0 \), the inner integral can be split into
\[
\int_{|x-y| < n^{-1}} + \sum_{j \geq 0} \int_{2^j n^{-1} < |x-y| \leq 2^{j+1} n^{-1}} h_n(x - y) w(x) \, dx.
\]

The first term can be bounded by
\[
\|h\|_\infty n^d \int_{|x-y| < n^{-1}} w(x) \, dx \leq [w]_{A_1} 2^d w(y),
\]
as the ball $|x - y| < 1/n$ is included in $y + [-1/n, 1/n]^d$. On the other hand, if $p_{0,\beta}(h) = \sup_{x \in \mathbb{R}^d} |h(x)||x|^\beta$, each term on the sum can be bounded from above by

$$p_{0,\beta}(h)n^{d-\beta} \int_{2^{j-1} < |x - y| \leq 2^{j+1}} |x - y|^{-\beta} w(x) \, dx \leq p_{0,\beta}(h)4^{d(1-\beta)}[w]_{A_1} w(y).$$

Thus, the sum is bounded from above by $p_{0,\beta}(h)\frac{4^d}{1-2d}\|w\|_{A_1} w(y)$. Hence

$$\|h_n \ast f\|_{L^1(w)} \leq [w]_{A_1} c_{d,h} \|f\|_{L^1(w)},$$

where $c_{d,h} = 2^d \left(1 + \inf_{\beta > d} p_{0,\beta}(h) \frac{2^d}{1-2d}\right).$

The following result is the weighted version of \[Lemma 2\] and the weak type maximal counterpart of \[Proposition 4.10\].

Proposition 4.3. Let $w \in A_p(\mathbb{R}^d)$ and let $\{m_j\}_j \subset M_{p,w}^{(m)}(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d)$ that are normalized functions. Then, there exist $\{m_{j,n}\}_{j,n} \subset L^{\infty}(\mathbb{R}^d)$ satisfying:

1. For any j and every $\xi \in \mathbb{R}^d$,

$$m_j(\xi) = \lim_n m_{j,n}(\xi).$$

2. $K_j = m_{j,n} \ast \check{\varphi}_n \in L^1(\mathbb{R}^d)$, and it is compactly supported.

3. $\sup_n \|m_{j,n}\|_{L^1(\mathbb{R}^d)} \leq \|m_j\|_{L^1(\mathbb{R}^d)}$.

4. $\sup_n \|\{m_{j,n}\}_j\|_{M_{p,w}^{(m)}(\mathbb{R}^d)} \leq d_{p,w} \|m_j\|_{M_{p,w}^{(m)}(\mathbb{R}^d)}$, where $d_{p,w}$ depends only on p, d and the A_p-constant of w.

Proof. Let $\{h_n\}$ be the functions given by \[Lemma 4.2\] and $\varphi_n(x)$ as in Definition \[3.3\]. Consider, for $j, n \in \mathbb{N}$,

$$m_{j,n}(\xi) = K_{\check{\varphi}_n}(\xi) = (\varphi_n \ast m_j)(\xi) = \hat{h}_n(\xi),$$

and proceed as in the proof of Theorem \[4.10\].

Theorem 4.4. Let $d = d_1 + d_2$, $u \in A_p(\mathbb{R}^{d_1})$, $v \in A_p(\mathbb{R}^{d_2})$ and define $w(x,y) = u(x)v(y)$. Suppose that $\{m_j\}_j \subset M_{p,w}^{(m)}(\mathbb{R}^d)$ and are normalized functions. Then, for a fixed $\xi \in \mathbb{R}^{d_1}$, $\{m_j(\xi, \cdot)\}_j \subset M_{p,w}^{(m)}(\mathbb{R}^{d_2})$ and

$$\sup_{\xi \in \mathbb{R}^{d_1}} \left\|\left\{m_j(\xi, \cdot)\right\}_j\right\|_{M_{p,w}^{(m)}(\mathbb{R}^{d_2})} \leq c_{p,w} \left\|\left\{m_j\right\}_j\right\|_{M_{p,w}^{(m)}(\mathbb{R}^d)},$$

where $c_{p,w}$ depends only on p, d and the A_p-constant of w.

Proof. Since $u \in A_p(\mathbb{R}^{d_1})$ and $v \in A_p(\mathbb{R}^{d_2})$ we have that $w \in A_p(\mathbb{R}^d)$ and $[w]_{A_p(\mathbb{R}^d)} \leq [u]_{A_p(\mathbb{R}^{d_1})}[v]_{A_p(\mathbb{R}^{d_2})}$. Then, by Proposition \[4.3\] we can assume that $\{m_j\}_{j=1}^\infty$ is a finite family such that $K_j = m_j \ast m_j \in L^1$ with compact support.

Let $N = \|\{m_j\}_j\|_{M_{p,w}^{(m)}(\mathbb{R}^d)}$. Since translations and convolution commute, it follows that for every $z \in \mathbb{R}^{d_2},$

$$\left\|\sup_{\xi \in \mathbb{R}^{d_1}} \left|B_{K_j} g\right|\right\|_{L^p(\mathbb{R}^{d_2}, u(\cdot)v(\cdot + z))} \leq N \|g\|_{L^p(\mathbb{R}^{d_2}, u(\cdot)v(\cdot + z))}.

(4.2)$$

Fix $\xi \in \mathbb{R}^{d_1}$. For any $f \in C_c^{\infty}(\mathbb{R}^{d_2})$, write

$$R_{(x,y)} f(z) = e^{2\pi i \xi \xi} f(z + y), \quad (x, y) \in \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}.

(4.3)$$
Observe that in this way,

\[\hat{T}_{K_j} f(z) = \int_{\mathbb{R}^d} K_j(x, y) R_{-(x, y)} f(z) \, dx dy \]

\[= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} K_j(x, y) e^{-2\pi i \xi \cdot x} \, dx \right) f(z - y) \, dy \]

\[= \int_{\mathbb{R}^d} m_j(\xi, \eta) \hat{f}(\eta) e^{-2\pi i \xi \cdot \eta} \, d\eta, \]

Fix \(q < p \) and fix \(E \subset \mathbb{R}^{d_1} \) a set of finite measure. For any \(z \in \mathbb{R}^{d_2} \), let \(A_z = \{(x, y) \in \mathbb{R}^d : y + z \in E\} \). Let \(r > 0 \) such that \(\text{supp} \, K_j \subset (-r, r) = Q_r \) for \(j = 1, \ldots, J \).

Let \(s > 0 \). For any \((x, y) \in Q_s = (-s, s)^d\),

\[\left\| \sup_{1 \leq j \leq J} |\hat{T}_{K_j} f| \chi_E \right\|_{L^q(\mathbb{R}^{d_2}, w)}^q = \sup_{1 \leq j \leq J} \left| R_{(x, y)} \hat{T}_{K_j} f(z) \right|^q v(y + z) \chi_E(y + z) \, dz. \]

If we consider the weight \(\omega = u \otimes 1 \) on \(\mathbb{R}^d \), it follows that

\[\left\| \sup_{1 \leq j \leq J} |\hat{T}_{K_j} f| \chi_E \right\|_{L^q(\mathbb{R}^d, u \otimes 1)}^q = \frac{1}{\omega(Q_s)} \int_{\mathbb{R}^d} \sup_{1 \leq j \leq J} \left| R_{(x, y)} \hat{T}_{K_j} f(z) \right|^q u(x) v(y + z) \chi_E(y + z) \, dx dy dz \]

\[\leq \frac{1}{\omega(Q_s)} \int_{\mathbb{R}^d} \left\{ \int_{A_z \cap Q_s} \sup_{1 \leq j \leq J} |B_{K_j} (R(\cdot f(z) \chi_{Q_{r+s}})) (x, y)|^q u(x) v(y + z) \, dx dy \right\} dz. \]

By Kolmogorov’s condition \((2.1)\) and \((4.2)\), the term inside curly brackets is bounded by

\[(c_{p,q})^q \left\{ \int_{Q_{r+s}} |R_{(x, y)} f(z)|^p u(x) v(y + z) \, dt \right\} \right\}^{\frac{q}{p}} \left\{ \int_{A_z \cap Q_s} u(x) v(y + z) \, dt \right\}^{1 - \frac{q}{p}}. \]

Then, by Hölder’s inequality, it follows that

\[\left\| \sup_{1 \leq j \leq J} |T_{K_j} f| \chi_E \right\|_{L^q(\mathbb{R}^{d_2}, u \otimes 1)}^q \leq \frac{c_{p,q} \mathcal{M}}{\omega(Q_s)} \left\{ \int_{\mathbb{R}^d} \int_{Q_{r+s}} u(x) v(y + z) \, dt \, dz \right\}^{\frac{p}{q}} \]

\[\times \left\{ \int_{\mathbb{R}^d} \int_{Q_{r+s}} |R_{(x, y)} f(z)|^p u(x) v(y + z) \, dx \, dy \, dz \right\}^{\frac{q}{p}} \]

\[\leq c_{p,q} \mathcal{M} \left(\frac{\omega(Q_{r+s})}{\omega(Q_s)} \right)^{\frac{p}{q}} v(E)^{1 - \frac{q}{p}} \left\| f \right\|_{L^p(\mathbb{R}^{d_2}, u \otimes 1)}^q. \]

Since \(u \in A_p(\mathbb{R}^{d_1}), \omega \in A_p(\mathbb{R}^d) \). Then by Lemma \([1.1]\) and Kolmogorov’s condition \((2.1)\), it follows that

\[\left\| \sup_{1 \leq j \leq J} |T_{K_j} f| \right\|_{L^p(\mathbb{R}^{d_2}, u \otimes 1)} \leq c_{p,q} \mathcal{M} \left\| f \right\|_{L^p(\mathbb{R}^{d_2}, u \otimes 1)} \]

Finally, considering \(c_p = \inf_{q < p} c_{p,q} \), the result easily follows by Fatou’s Lemma and the density of \(C_c^\infty(\mathbb{R}^{d_2}) \) in \(L^p(\mathbb{R}^{d_2}, u \otimes 1) \). \(\square \)
5. Consequences and Applications

5.1. Hörmander-Mihlin type multipliers. The first application involves multipliers satisfying a Hörmander-Mihlin type condition.

Definition 5.1 (see [14]). Let \(m \in L^\infty(\mathbb{R}^d) \cap C^d (\mathbb{R}^d \setminus \{0\}) \), \(l \in \mathbb{N} \) and \(s \geq 1 \). We say \(m \in M(s,l) \) if it satisfies

\[
(5.1) \quad c_{m,s,l} = \sup_{|\alpha| \leq l} \sup_{r > 0} \left(r^{|\alpha| - d} \int_{r < |x| < 2r} \left| \frac{\partial^{|\alpha|} m}{\partial x_1^{\alpha_1} \cdots \partial x_d^{\alpha_d}}(x) \right|^s \, dx \right)^{1/s} < \infty.
\]

In 1979, D. Kurtz and R. Wheeden proved the following result.

Theorem 5.2 ([14, Theorem 1]). Let \(1 < s \leq 2 \), \(\frac{d}{s} < l \leq d \) and \(m \in M(s,l) \). If

1. \(d/l < p < \infty \) and \(w \in A_{pl/d}(\mathbb{R}^d) \) or
2. \(1 < p < (d/l)' \) and \(w^{-1/(p-1)} \in A_{p'l/d}(\mathbb{R}^d) \),

then \(m \in M_{p,w}(\mathbb{R}^d) \). When \(l < d \) it can be taken \(p = d/l \) in (1) or \(p = (d/l)' \) in (2).

Moreover, if \(w^{d/l} \in A_1(\mathbb{R}^d) \), then \(m \in M_{1,w}(\mathbb{R}^d) \).

Corollary 5.3. Under the hypothesis of Theorem 5.2 and assuming that \(m \) is a normalized function, the following holds: If

1. \(d/l < p < \infty \) and \(w \in A_{pl/d}(\mathbb{T}^d) \) or
2. \(1 < p < (d/l)' \) and \(w^{-1/(p-1)} \in A_{p'l/d}(\mathbb{T}^d) \),

then \(m|_{\mathbb{T}^d} \in M_{p,w}(\mathbb{T}^d) \). When \(l < d \) it can be taken \(p = d/l \) in (1) or \(p = (d/l)' \) in (2).

Moreover, if \(w^{d/l} \in A_1(\mathbb{T}^d) \), then \(m|_{\mathbb{T}^d} \in M_{1,w}(\mathbb{T}^d) \).

Proof. The result follows by applying Theorems 3.10 and 3.11 to \(m \).

5.2. Singular integral operators. Our second example involves the classical theory of Calderón-Zygmund singular integrals.

Definition 5.4 ([10, Definition II.5.17]). A function \(K \in L^1_{\text{loc}}(\mathbb{R}^d \setminus \{0\}) \) is said to be a regular kernel if \(\tilde{K} \in L^\infty(\mathbb{R}^d) \) and it satisfies

\[
(5.2) \quad |K(x)| \leq C |x|^{-d}, \quad \forall x \in \mathbb{R}^d \setminus \{0\},
\]

\[
(5.3) \quad |K(x - y) - K(x)| \leq C |y| |x|^{-d-1}, \quad |x| > 2 |y|.
\]

Corollary 5.5. Let \(K \) be a regular kernel and consider for any \(0 < r < s < \infty \), \(K_{r,s} = K_{r < |x| < s} \) and \(m_{r,s} = \tilde{K}_{r,s} \). If \(1 < p < \infty \) and \(w \in A_p(\mathbb{T}^d) \) there exists a constant \(c \) such that

\[
\| \{ m_{r,s} \} \|_{M_{p,w}(\mathbb{T}^d)} \leq c.
\]

If \(w \in A_1(\mathbb{T}^d) \), then there exists a constant \(c \) such that

\[
\| \{ m_{r,s} \} \|_{M_{1,w}(\mathbb{T}^d)} \leq c.
\]

Proof. It is easy to see that \(T^d \{ m_{r,s} \}_{r<s} f(x) = T^d \{ m_{r,s} \}_{r<s} f(x) \) for every \(f \in P(\mathbb{T}^d) \). Then, the result follows by the known corresponding result for functions in \(\mathbb{R}^d \) (see [10, Theorem IV.3.6 and V.4.11]) by applying Theorem 5.2 and its corresponding strong version.
5.3. Bochner-Riesz partial sums. Our third application involves Bochner-Riesz partial sums. Let us recall that the Bochner-Riesz operators in \(\mathbb{R}^d \) are defined as

\[
\left(B_{\lambda}^r f \right)(\xi) = m_r(\xi) \hat{f}(\xi), \quad \text{where} \quad m_r(x) = \left(1 - \frac{|x|^2}{r^2} \right)_+,
\]

\(t_+ = \max(t, 0) \), and the associated maximal operator is defined by

\[
B_{\lambda}^r f(x) = \sup_{r > 0} |B_{\lambda}^r f(x)|
\]

for \(\lambda > 0 \). It is known that for \(\lambda > \frac{d-1}{2} \), \(B_{\lambda}^r f \) is pointwise majorized by the Hardy-Littlewood maximal operator; then it inherits its boundedness properties. For the critical index the following is known (S. Shi and Q. Sun [17, Theorem 1] and A. Vargas [16, Theorem 1]).

Theorem 5.6. Let \(\lambda = \frac{d-1}{2} \). If \(1 < p < \infty \) and \(w \in A_p(\mathbb{R}^d) \), then

\[
\left\| B_{\lambda}^r f \right\|_{L^p(\mathbb{R}^d, w)} \leq C \left\| f \right\|_{L^p(\mathbb{R}^d, w)},
\]

and if \(w \in A_1(\mathbb{R}^d) \), there is a constant \(C \) such that for each \(r > 0 \),

\[
\left\| B_{\lambda}^r f \right\|_{L^1(\mathbb{R}^d, w)} \leq C \left\| f \right\|_{L^1(\mathbb{R}^d, w)},
\]

where the constants depend only on the \(A_p \)-constant of \(w \) and the dimension \(d \).

Let us observe that for \(\lambda = (d - 1)/2 \), the kernel of the operator \(B_{\lambda}^r \), say \(K \), satisfies the size condition \(|K(x)| \lesssim |x|^{-d} \), but it does not satisfy any Hörmander type condition such as (5.3) above. Then we can’t apply the result obtained in the previous example.

In the periodic case, for \(r > 0 \), the Bochner-Riesz partial sum of order \(\lambda > 0 \) is defined for every \(f \in P(\mathbb{T}^d) \) by

\[
S_{\lambda}^r f(\theta) = \sum_{|n| \leq r} \left(1 - \frac{|n|^2}{r^2} \right)_+ \hat{f}(n) e^{2\pi i n \theta},
\]

and we denote by \(S_{\lambda}^r \) the associated maximal operator. Observe that since the function \((1 - |x|^2)_+ \) is continuous, for every \(f \in P(\mathbb{T}^d) \),

\[
S_{\lambda}^r f(x) = \sup_{r \in Q_+} |S_{\lambda}^r f(x)|.
\]

Then, as a consequence of our results, the following counterpart to Theorem 5.6 is obtained.

Corollary 5.7. Let \(\lambda \geq \frac{d-1}{2} \). If \(1 < p < \infty \) and \(w \in A_p(\mathbb{T}^d) \), then there exists \(C > 0 \) such that

\[
\left\| S_{\lambda}^r f \right\|_{L^p(\mathbb{T}^d, w)} \leq C \left\| f \right\|_{L^p(\mathbb{T}^d, w)}.
\]

If \(w \in A_1(\mathbb{T}^d) \) and \(\lambda = \frac{d-1}{2} \) there exists \(C > 0 \) such that for any \(r > 0 \),

\[
\left\| S_{\lambda}^r f \right\|_{L^1(\mathbb{T}^d, w)} \leq C \left\| f \right\|_{L^1(\mathbb{T}^d, w)}.
\]

and if \(\lambda > \frac{d-1}{2} \), there exists \(C > 0 \) such that

\[
\left\| S_{\lambda}^r f \right\|_{L^1(\mathbb{T}^d, w)} \leq C \left\| f \right\|_{L^1(\mathbb{T}^d, w)}.
\]
Corollary 5.8. Let $\lambda \geq \frac{d-1}{2}$, $1 \leq p < \infty$ and $w \in A_p(\mathbb{T}^d)$. For any $f \in L^p(\mathbb{T}^d, w)$,
\[
\lim_{r \to 0^+} S^r f = f,
\]
where the convergence is considered in measure for $p = 1$ and $\lambda = \frac{d-1}{2}$ and pointwise almost everywhere in the other cases.

For λ below the critical index the study of the boundedness properties of the Bochner-Riesz operators constitutes an active area of research (see [9] for instance [9, Theorem 5.1] (taking $\lambda = \frac{d-1}{2}$ below the critical index). In this setting, the following is a direct consequence of Theorem 5.11 (taking $u_0 = 1$ with the notation therein).

Theorem 5.9. Let $0 < \lambda < (d-1)/2$. If $w(x) = v(x)^{2\lambda/d-1}$ with $v \in A_2(\mathbb{R}^d)$, then, for any $r > 0$, B^r_λ is bounded in $L^2(\mathbb{R}^d, w)$ uniformly on r.

Theorem 5.10 leads to obtain the following periodic counterpart result.

Corollary 5.10. Let $0 < \lambda < (d-1)/2$. If $w(x) = v(x)^{2\lambda/d-1}$ with $v \in A_2(\mathbb{T}^d)$, then, for any $r > 0$, S^r_λ is bounded in $L^2(\mathbb{T}^d, w)$ uniformly on r.

5.4. Extension of multipliers from $L^p(\mathbb{T})$ to $L^p(\mathbb{R}, w)$. In this section we are going to show how Theorem 5.11 allows us to see the strong ties between $M_p(\mathbb{T})$ and a subspace of $M_{p,w}(\mathbb{R})$ for a subclass of weights in $A_p(\mathbb{R})$ (see Corollary 5.12 below).

Following M. Jodeit’s ideas in [12], E. Berkson, M. Paluszyński and G. Weiss in [5] gave a way to extend multipliers from $L^p(\mathbb{T})$ to $L^p(\mathbb{R}, w)$ with $w \in A_p(\mathbb{R})$ satisfying that there exists a constant $\rho \geq 1$ such that for each $k \in \mathbb{Z}$
\[
\rho^{-1}w(k) \leq w(x) \leq \rho w(k), \quad \text{for all } x \in [k, k+1).
\]

These weights are said to be in W_p.

In this framework, E. Berkson, M. Paluszyński and G. Weiss proved the following result.

Theorem 5.11 ([5, Theorem 4.21]). Let $1 < p < \infty$, $w \in W_p$, $\Psi \in M_{p,w}(\mathbb{R})$ and the support of Ψ is contained in $[-1/2, 1/2]$. Then, if $\{\phi_n\}_n \in M_p(\mathbb{T})$, we have that
\[
\mathcal{W}_{\phi_n, \Psi}(t) = \sum_{m \in \mathbb{Z}} \phi(m) \Psi(t-m) \in M_{p,w}(\mathbb{R})
\]
and
\[
\|\{\mathcal{W}_{\phi_n, \Psi}\}_n\|_{M_{p,w}(\mathbb{R})} \leq K_{p,w} \|\Psi\|_{M_{p,w}(\mathbb{R})} \|\{\phi_n\}_n\|_{M_p(\mathbb{T})}.
\]

Since $\mathcal{W}_{\phi_n, \Psi}|_{\mathbb{Z}} = \Psi(0)\hat{\phi}_n|_{\mathbb{Z}}$, a direct consequence of Theorem 5.13 with $u = 1$ and $v = w$ is that the converse of Theorem 5.11 also holds:

Corollary 5.12. Let $\{\phi_n\}_n \subset \ell^\infty(\mathbb{Z})$. Then, under the hypothesis of Theorem 5.11 we have that if $\Psi(0) \neq 0$,
\[
\|\{\mathcal{W}_{\phi_n, \Psi}\}_n\|_{M_{p,w}(\mathbb{R})} < +\infty \quad \text{if and only if} \quad \|\{\phi_n\}_n\|_{M_p(\mathbb{T})} < +\infty.
\]
Moreover,
\begin{equation}
C_{p,w} \frac{\|\{\phi_n\}_n\|_{M_p(T)}}{\|\Psi(0)\|} \leq \frac{\|\{W_{\phi_n,\Psi}\}_n\|_{M_{p,w}(\mathbb{R})}}{\|\Psi\|} \leq K_{p,w} \frac{\|\{\phi_n\}_n\|_{M_p(T)}}{\|\Psi\|_{M_{p,w}(\mathbb{R})}}.
\end{equation}

Observation 5.13. In the particular case of a single multiplier, inequality (5.5) yields that, for any $w \in W_p$, the map $\phi \mapsto W_{\phi, \Psi}$ induces an isomorphism between $M_p(T)$ and a subspace of $M_{p,w}(\mathbb{R})$. This result is a one dimensional weighted generalization of the unweighted result in [12, p. 225] for Ψ the characteristic function of the interval $[-1/2, 1/2]$.

ACKNOWLEDGEMENTS

We would like to thank the referee for some valuable comments which have improved the final version of this work.

REFERENCES

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, 08007 Barcelona, Spain
E-mail address: carro@ub.edu
URL: http://garf.ub.edu

Department of Mathematics, Uppsala University, Upssala, SE 75106, Sweden
E-mail address: salvador@math.uu.se
URL: www.math.uu.se/~salvador

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use