Sumintegral interpolators and the EulerMaclaurin formula for polytopes
Authors:
Stavros Garoufalidis and James Pommersheim
Journal:
Trans. Amer. Math. Soc. 364 (2012), 29332958
MSC (2010):
Primary 57N10; Secondary 57M25
Published electronically:
February 14, 2012
MathSciNet review:
2888234
Fulltext PDF
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A local lattice point counting formula, and more generally a local EulerMaclaurin formula follow by comparing two natural families of meromorphic functions on the dual of a rational vector space , namely the family of exponential sums and the family of exponential integrals parametrized by the set of rational polytopes in . The paper introduces the notion of an interpolator between these two families of meromorphic functions. We prove that every rigid complement map in gives rise to an effectively computable interpolator (and a local EulerMaclaurin formula), an interpolator (and a reverse local EulerMaclaurin formula) and an interpolator (which interpolates between integrals and sums over interior lattice points). Rigid complement maps can be constructed by choosing an inner product on or by choosing a complete flag in . The corresponding interpolators generalize and unify the work of BerlineVergne, PommersheimThomas, and Morelli.
 [Bv]
Alexander
I. Barvinok, A polynomial time algorithm for counting integral
points in polyhedra when the dimension is fixed, Math. Oper. Res.
19 (1994), no. 4, 769–779. MR 1304623
(96c:52026), 10.1287/moor.19.4.769
 [BP]
Alexander
Barvinok and James
E. Pommersheim, An algorithmic theory of lattice points in
polyhedra, New perspectives in algebraic combinatorics (Berkeley, CA,
1996–97), Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ.
Press, Cambridge, 1999, pp. 91–147. MR 1731815
(2000k:52014)
 [BV]
Nicole
Berline and Michèle
Vergne, Local EulerMaclaurin formula for polytopes, Mosc.
Math. J. 7 (2007), no. 3, 355–386, 573
(English, with English and Russian summaries). MR 2343137
(2008k:52026)
 [Br]
Michel
Brion, Points entiers dans les polyèdres convexes, Ann.
Sci. École Norm. Sup. (4) 21 (1988), no. 4,
653–663 (French). MR 982338
(90d:52020)
 [Fu]
William
Fulton, Introduction to toric varieties, Annals of Mathematics
Studies, vol. 131, Princeton University Press, Princeton, NJ, 1993.
The William H. Roever Lectures in Geometry. MR 1234037
(94g:14028)
 [La]
Jim
Lawrence, Rationalfunctionvalued valuations on polyhedra,
Discrete and computational geometry (New Brunswick, NJ, 1989/1990), DIMACS
Ser. Discrete Math. Theoret. Comput. Sci., vol. 6, Amer. Math. Soc.,
Providence, RI, 1991, pp. 199–208. MR 1143297
(92m:52025)
 [McM]
P.
McMullen, Lattice invariant valuations on rational polytopes,
Arch. Math. (Basel) 31 (1978/79), no. 5,
509–516. MR
526617 (80d:52011), 10.1007/BF01226481
 [Mo]
Robert
Morelli, Pick’s theorem and the Todd class of a toric
variety, Adv. Math. 100 (1993), no. 2,
183–231. MR 1234309
(94j:14048), 10.1006/aima.1993.1033
 [Pi]
G.A. Pick, Geometrisches zur Zahlenlehre, Sitzenber. Lotos (Prague) 19 (1899) 311319.
 [PT]
James
Pommersheim and Hugh
Thomas, Cycles representing the Todd class of
a toric variety, J. Amer. Math. Soc.
17 (2004), no. 4,
983–994. MR 2083474
(2005h:14124), 10.1090/S0894034704004606
 [Th]
Hugh
Thomas, Cyclelevel intersection theory for toric varieties,
Canad. J. Math. 56 (2004), no. 5, 1094–1120. MR 2085635
(2005e:14083), 10.4153/CJM20040490
 [Bv]
 A. Barvinok, A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed, Math. Oper. Res. 19 (1994) 769779. MR 1304623 (96c:52026)
 [BP]
 A. Barvinok and J.E. Pommersheim, An algorithmic theory of lattice points in polyhedra, Math. Sci. Res. Inst. Publ., 38 (1999) 91147. MR 1731815 (2000k:52014)
 [BV]
 N. Berline and M. Vergne, Local EulerMaclaurin formula for polytopes, Mosc. Math. J. 7 (2007) 355386. MR 2343137 (2008k:52026)
 [Br]
 M. Brion, Points entiers dans les polyèdres convexes, Ann. Sci. École Norm. Sup. (4) 21 (1988) 653663. MR 982338 (90d:52020)
 [Fu]
 W. Fulton, Introduction to toric varieties. Annals of Mathematics Studies 131, Princeton University Press, 1993. MR 1234037 (94g:14028)
 [La]
 J. Lawrence, Rationalfunctionvalued valuations on polyhedra, DIMACS Ser. Discrete Math. Theoret. Comput. Sci.,6 (1991) 199208. MR 1143297 (92m:52025)
 [McM]
 P. McMullen, Lattice invariant valuations on rational polytopes, Archiv Math. 31 (1978) 509516. MR 526617 (80d:52011)
 [Mo]
 R. Morelli, Pick's theorem and the Todd class of a toric variety, Adv. Math. 100 (1993) 183231. MR 1234309 (94j:14048)
 [Pi]
 G.A. Pick, Geometrisches zur Zahlenlehre, Sitzenber. Lotos (Prague) 19 (1899) 311319.
 [PT]
 J. Pommersheim and H. Thomas, Cycles representing the Todd class of a toric variety, J. Amer. Math. Soc. 17 (2004) 983994. MR 2083474 (2005h:14124)
 [Th]
 H. Thomas, Cyclelevel intersection theory for toric varieties, Canad. J. Math. 56 (2004) 10941120. MR 2085635 (2005e:14083)
Similar Articles
Retrieve articles in Transactions of the American Mathematical Society
with MSC (2010):
57N10,
57M25
Retrieve articles in all journals
with MSC (2010):
57N10,
57M25
Additional Information
Stavros Garoufalidis
Affiliation:
School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 303320160
Email:
stavros@math.gatech.edu
James Pommersheim
Affiliation:
Department of Mathematics, Reed College, 3203 SE Woodstock Boulevard, Portland, Oregon 972028199
Email:
jamie@reed.edu
DOI:
http://dx.doi.org/10.1090/S000299472012053815
PII:
S 00029947(2012)053815
Keywords:
Polytopes,
EulerMaclaurin formula,
reverse EulerMaclaurin formula,
lattice points,
flag varieties,
exponential sums,
exponential integrals,
interpolators.
Received by editor(s):
February 18, 2010
Received by editor(s) in revised form:
May 20, 2010
Published electronically:
February 14, 2012
Additional Notes:
The first author was supported in part by NSF
Article copyright:
© Copyright 2012
American Mathematical Society
