Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On the classification of inductive limits of II$ _{1}$ factors with spectral gap

Author: Sorin Popa
Journal: Trans. Amer. Math. Soc. 364 (2012), 2987-3000
MSC (2010): Primary 46L10, 46L37
Published electronically: January 26, 2012
MathSciNet review: 2888236
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider II$ _{1}$ factors $ M$ which can be realized as inductive limits of subfactors, $ N_{n} \nearrow M$, having spectral gap in $ M$ and satisfying the bi-commutant condition $ (N_{n}'\cap M)'\cap M=N_{n}$. Examples are the enveloping algebras associated to non-Gamma subfactors of finite depth, as well as certain crossed products of McDuff factors by amenable groups. We use deformation/rigidity theory to obtain classification results for such factors.

References [Enhancements On Off] (What's this?)

  • [C75] A. Connes: Sur la classification des facteurs de type II, C. R. Acad. Sci. Paris 281 (1975), 13-15. MR 0377534 (51:13706)
  • [C76] A. Connes: Classification of injective factors, Ann. of Math. (2) 104 (1976), 73-115. MR 0454659 (56:12908)
  • [E75] E. Effros: Property $ \Gamma $ and inner amenability, Proc. Amer. Math. Soc. 47 (1975), 483-486. MR 0355626 (50:8100)
  • [GHJ90] F. Goodman, P. de la Harpe, V.F.R. Jones: ``Coxeter graphs and towers of algebras'', MSRI Publications 14, Springer, 1989. MR 999799 (91c:46082)
  • [ILP96] M. Izumi, R. Longo, S. Popa: A Galois correspondence for compact groups of automorphisms of von Neumann algebras with a generalization to Kac algebras, J. Funct. Analysis 155, (1998), 25-63. MR 1622812 (2000c:46117)
  • [J79] V.F.R. Jones: A II$ _{1}$ factor anti-isomorphic to itself but without involuntary antiautomorphisms, Math. Scand. 46 (1980), 103-117. MR 585235 (82a:46075)
  • [J80] V.F.R. Jones: Actions of finite groups on the hyperfinite II$ _{1}$ factor, Mem. Amer. Math. Soc. 28, 1980. MR 587749 (81m:46094)
  • [J82] V.F.R. Jones: Index for subfactors, Invent. Math 72 (1983), 1-25. MR 696688 (84d:46097)
  • [K93] Y. Kawahigashi: Centrally trivial automorphisms and an analogue of Connes's $ \chi (M)$ for subfactors, Duke Math. J. 71 (1993), 93-118. MR 1230287 (94k:46131)
  • [M70] D. McDuff: Central sequences and the hyperfinite factor, Proc. London Math. Soc. 21 (1970), 443-461. MR 0281018 (43:6737)
  • [Oc83] A. Ocneanu: Actions of discrete amenable groups on factors, Lecture Notes in Math. 1138, Springer Verlag, Berlin-Heidelberg-New York, 1985. MR 807949 (87e:46091)
  • [Oc87] A. Ocneanu: Quantized groups, string algebras and Galois theory for von Neumann algebras. In ``Operator Algebras and Applications'', London Math. Soc. Lect. Notes Series, Vol. 136, 1988, pp. 119-172. MR 996454 (91k:46068)
  • [OP03] N. Ozawa, S. Popa: Some prime factorization results for type II$ _{1}$ factors, Invent. Math., 156 (2004), 223-234. MR 2052608 (2005g:46117)
  • [OP07] N. Ozawa, S. Popa: On a class of $ \text {\rm II}_{1}$ factors with at most one Cartan subalgebra, Annals of Mathematics (2) 172 (2010), 713-749. MR 2680430
  • [PP83] M. Pimsner, S. Popa: Entropy and index for subfactors, Ann. Sc. Ec. Norm. Sup. 19 (1986), 57-106. MR 860811 (87m:46120)
  • [P89a] S. Popa: Sur la classification des sous-facteurs d'indice fini du facteur hyperfini, Comptes Rendus de l'Académie de Sciences de Paris, 311 (1990), 95-100. MR 1065437 (91m:46094)
  • [P89b] S. Popa: Sousfacteurs, actions des groupes et cohomologie, Serie I, Comptes Rend. Acad. Sci. Paris, 309 (1989), 771-776. MR 1054961 (91i:46069)
  • [P90] S. Popa: Markov traces on universal Jones algebras and subfactors of finite index, Invent. Math. 111 (1993), 375-405. MR 1198815 (94c:46128)
  • [P91] S. Popa: Classification of amenable subfactors of type II, Acta Mathematica, 172 (1994), 163-255. MR 1278111 (95f:46105)
  • [P92] S. Popa: Classification of actions of discrete amenable groups on amenable subfactors of type II, Intern. J. Math. 21 (2010), 1663-1695. MR 2747966
  • [P94] S. Popa, An axiomatization of the lattice of higher relative commutants of a subfactor, Invent. Math., 120 (1995), 427-445. MR 1334479 (96g:46051)
  • [P97] S. Popa: Some properties of the symmetric enveloping algebras with applications to amenability and property T, Documenta Mathematica, 4 (1999), 665-744. MR 1729488 (2001c:46116)
  • [P98] S. Popa: Universal construction of subfactors, J. reine angew. Math., 543 (2002), 39-81. MR 1887878 (2002k:46163)
  • [P01] S. Popa: On a class of type II$ _{1}$ factors with Betti numbers invariants, Ann. of Math. (2) 163 (2006), 809-899. MR 2215135 (2006k:46097)
  • [P03] S. Popa: Strong Rigidity of II$ _{1}$ Factors Arising from Malleable Actions of $ w$-Rigid Groups I, Invent. Math. 165 (2006), 369-408. MR 2231961 (2007f:46058)
  • [P04a] S. Popa: Strong Rigidity of II$ _{1}$ Factors Arising from Malleable Actions of $ w$-Rigid Groups II, Invent. Math. 165 (2006), 409-453. MR 2231962 (2007h:46084)
  • [P04b] S. Popa: A unique decomposition result for HT factors with torsion free core, J. Funct. Analysis 242 (2007), 519-525. MR 2274819 (2007m:46099)
  • [P06a] S. Popa: On the superrigidity of malleable actions with spectral gap, J. Amer. Math. Soc. 21 (2008), 981-1000. MR 2425177 (2009e:46056)
  • [P06b] S. Popa: On Ozawa's Property for Free Group Factors, Int. Math. Res. Notices (2007) Vol. 2007, article ID rnm036, 10 pages, doi:10.1093/imrn/rnm036 published on June 22, 2007 (math.OA/0608451)
  • [P06c] S. Popa: Deformation and rigidity for group actions and von Neumann algebras, in ``Proceedings of the International Congress of Mathematicians'' (Madrid 2006), Volume I, EMS Publishing House, Zurich 2006/2007, pp. 445-479. MR 2334200 (2008k:46186)
  • [P09] S. Popa: On spectral gap rigidity and Connes invariant $ \chi (M)$, Proc. Amer. Math. Soc. 138 (2010), 3531-3539. MR 2661553 (2012b:46127)
  • [PS00] S. Popa, D. Shlyakhtenko: Universal properties of $ L(F_{\infty })$ in subfactor theory, Acta Mathematica, 191 (2003), 225-257. MR 2051399 (2005b:46140)
  • [R92] F. Radulescu: Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group, of noninteger index, Invent. Math. 115 (1994), 347-389. MR 1258909 (95c:46102)
  • [S81] K. Schmidt: Amenability, Kazhdan's property T, strong ergodicity and invariant means for ergodic group-actions, Ergodic Theory Dynamical Systems 1 (1981), 223-236. MR 661821 (83m:43001)
  • [Va09] S. Vaes: An inner amenable group whose von Neumann algebra does not have property Gamma, math.OA/0909.1485
  • [V89] D. Voiculescu: Circular and semicircular systems and free product factors, in ``Operator algebras, unitary representations, enveloping algebras, and invariant theory'' (Paris, 1989), Prog. Math. 92, Birkhäuser, Boston, 1990, 45-60. MR 1103585 (92e:46124)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L10, 46L37

Retrieve articles in all journals with MSC (2010): 46L10, 46L37

Additional Information

Sorin Popa
Affiliation: Department of Mathematics, University of California, Los Angeles, Los Angeles, California 90095-155505

Received by editor(s): October 18, 2009
Received by editor(s) in revised form: June 3, 2010
Published electronically: January 26, 2012
Additional Notes: This work was supported in part by NSF Grant 0601082.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society