Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Number of central configurations and singular surfaces in the mass space in the collinear four-body problem


Authors: Tiancheng Ouyang and Zhifu Xie
Journal: Trans. Amer. Math. Soc. 364 (2012), 2909-2932
MSC (2010): Primary 37N05, 70F10, 70F15, 37N30, 70H05, 70F17
DOI: https://doi.org/10.1090/S0002-9947-2012-05426-2
Published electronically: February 10, 2012
MathSciNet review: 2888233
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a given $ m=(m_1,m_2,\cdots , m_n)\in (\mathbf {R}^+)^n$, let $ p$ and $ q\in (\mathbf {R}^d)^n$ be two central configurations for $ m$. Then we call $ p$ and $ q$ geometrically equivalent and write $ p\sim q$ if they differ by a rotation followed by a scalar multiplication as well as by a permutation of bodies. Denote by $ L(n,m)$ the set of geometric equivalence classes of $ n$-body collinear central configurations for any given mass vector $ m$. There are other different understandings of equivalence of central configurations in the collinear $ n$-body problem. Under the usual definition of equivalence of central configurations in history, permutations of the bodies are not allowed, and we call them permutation equivalence. In this case Euler found three collinear central configurations and Moulton generalized to $ n!/2$ central configurations for any given mass $ m$ in the collinear $ n$-body problem under permutation equivalence. In particular, the number of central configurations becomes from 12 under permutation equivalence to 1 under geometric equivalence for four equal masses in the collinear four-body problem. The main result in this paper is the discovery of the explicit parametric expressions of the union $ H_4$ of the singular surfaces in the mass space $ m=(m_1,m_2,m_3,m_4)\in $ $ (\mathbf {R}^+)^4$, which decrease the number of collinear central configurations under geometric equivalence. We prove that the number of central configurations $ ^\char93 L(4,m)=4!/2-1=11$ if $ m_1, m_2, m_3$ and $ m_4$ are mutually distinct and $ m\in H_4$.


References [Enhancements On Off] (What's this?)

  • 1. A. Albouy, Symetrie des configurations centrales de quatre corps (French) [Symmetry of central configurations of four bodies] C. R. Acad. Sci. Paris Soc. I Math. 320 (1995), no. 2, 217-220. MR 1320359 (95k:70023)
  • 2. A. Albouy, The symmetric central configurations of four equal masses. Hamiltonian dynamics and celestial mechanics (Seattle, WA, 1995), 131-135, Contemp. Math., 198, Amer. Math. Soc., Providence, RI, 1996. MR 1409157 (97g:70012)
  • 3. A. Albouy, Y. Fu and S. Sun, Symmetry of planar four-body convex central configurations, Proc. Royal Soc. A 464 (2008), 1355-1365. MR 2386651 (2009d:70012)
  • 4. A. Albouy and R. Moeckel, The inverse problem for collinear central configuration, Celestial Mechanics and Dynamical Astronomy 77 (2000), 77-91. MR 1820352 (2002b:70017)
  • 5. M. Arribas, A. Elipe, T. Kalvouridis, and M. Palacios, Homographic solutions in the planar $ n+1$ body problem with quasi-homogeneous potentials, Celestial Mech. Dyn. Astr. 99 (2007), 1-12. MR 2347831 (2010a:70014)
  • 6. M. Hampton and R. Moeckel, Finiteness of relative equilibria of the four-body problem. Invent. Math. 163 (2006), no. 2, 289-312. MR 2207019 (2008c:70019)
  • 7. M. Hampton and M. Santoprete, Seven-body central configurations: A family of central configurations in the spatial seven-body problem, Celestial Mech. Dyn. Astr. 99 (2007), 293-305. MR 2441568 (2009e:70031)
  • 8. J. Llibre and L.F. Mello, New central configurations for the planar 5-body problem, Celestial Mech. Dyn. Astr. 100 (2008), 141-149. MR 2384337
  • 9. J. Lee and M. Santoprete, Central configurations of the five-body problem with equal masses, Celestial Mech. Dyn. Astr. 104 (2009), 369-381. MR 2524814 (2010i:70007)
  • 10. T. Lei and M. Santoprete, Rosette central configurations, degenerate central configurations and bifurcations, Celestial Mech. Dyn. Astr. 94 (2006), 271-287. MR 2247661 (2008d:70021)
  • 11. N. Jacobson, Basic Algebra I. W.H. Freeman and Co., 1974. MR 0356989 (50:9457)
  • 12. J. Bernat, J. Llibre, and E. Perez-Chavela, On the planar central configurations of the 4-body problem with three equal masses. Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis 16 (2009), 1-13. MR 2488967 (2010b:70017)
  • 13. E. Leandro, Finiteness and bifurcations of some symmetrical classes of central configurations. Arch. Ration. Mech. Anal. 167 (2003), no. 2, 147-177. MR 1971151 (2004c:70022)
  • 14. E. Leandro, On the central configurations of the planar restricted four-body problem. J. Differential Equations 226 (2006), no. 1, 323-351. MR 2232439 (2008a:70022)
  • 15. Y. Long and S. Sun, Collinear central configurations and singular surfaces in the mass space, Arch. Rational Mech. Anal. 173 (2004), 151-167. MR 2081029 (2006d:70033)
  • 16. Y. Long and S. Sun, ``Collinear central configurations in celestial mechanics'', Topological Methods, Variational Methods and Their Applications: ICM 2002 Satellite Conference on Nonlinear Functional Analysis, Taiyuan, Shan Xi, P.R. China, August 14 - 18, 2002 By H. Brezis, K. C. Chang, pp. 159-165. MR 2011693 (2004i:70012)
  • 17. Y. Long and S. Sun, Four-body central configurations with some equal masses, Arch. Ration. Mech. Anal. 162 (2002), no. 1, 25-44. MR 1892230 (2003a:70013)
  • 18. K. Meyer and G. R. Hall, ``Introduction to Hamiltonian Dynamical System and the N-Body Problem'', Applied Mathematical Sciences, Vol. 90, Springer, 1992. MR 1140006 (93b:70002)
  • 19. K. Meyer, G. R. Hall and D. Offin, ``Introduction to Hamiltonian Dynamical System and the N-Body Problem'', second edition, Applied Mathematical Sciences, Vol. 90, Springer, 2009. MR 2468466 (2010d:37108)
  • 20. F.R. Moulton, The straight line solutions of the problem of N bodies, Ann. Math., II. Ser. 12, 1910, 1-17. MR 1503509
  • 21. R. Moeckel, On central configurations, Math. Zeit. 205 (1990), 499-517. MR 1082871 (92b:70012)
  • 22. T. Ouyang and Z. Xie, Collinear central confiugration in four-body problem, Cele. Mech. & Dyna. Astr. 93 (2005) 147-166. MR 2186805 (2006h:70016)
  • 23. E. Perez-Chavela and M. Santoprete, Convex four-body central configurations with some equal masses, Arch. Ration. Mech. Anal. 185 (2007), no. 3, 481-494. MR 2322818 (2008m:70030)
  • 24. D. Saari, On the role and the properties of $ n$-body central configurations, Clestial Mech. 21 (1980), 9-20. MR 564603 (81a:70016)
  • 25. J. Shi and Z. Xie, Classification of four-body central configurations with three equal masses, Journal of Mathematical Analysis and Applications 363 (2010), 512-524. MR 2564872
  • 26. S. Smale, Topology and mechanics. II. The planar n-body problem, Invent. Math. 11 (1970), 45-64. MR 0321138 (47:9671)
  • 27. S. Smale, Mathematical problems for the next century, the Mathematical Intelligencer, Volume 20, Number 2, 1998. MR 1631413 (99h:01033)
  • 28. D. Schmidt, Central configurations in $ \mathbf {R}^2$ and $ \mathbf {R}^3$. Contemp. Math. 81 (1988) 59-76. MR 986257 (90d:70028)
  • 29. W.L. Williams, Permanent Configurations in the Problem of Five Bodies, Trans. Amer. Math. Soc. 44 (1938), 563-579. MR 1501982
  • 30. A. Wintner, The analytical Foundations of Celestial Mechanics. Princeton Math. Series 5, 215. Princeton Univ. Press, Princeton, NJ, 1941. MR 0005824 (3:215b)
  • 31. M. Woodlin and Z. Xie, Collinear central configurations in the $ n$-body problem with general homogeneous potential, Jour. Math. Physics 50 (2009), 102901. MR 2573123
  • 32. Z. Xia, Convex central configurations for the $ n$-body problem. J. Differential Equations 200 (2004), no. 2, 185-190. MR 2052612 (2005f:70018)
  • 33. Z. Xie, Inverse problem of central configurations and singular curve in the collinear $ 4$-body problem, Cele. Mech. & Dyna. Astr. 107 (2010), 353-376.
  • 34. Z. Xie, Super central configurations of the $ n$-body problem Jour. Math. Physics 51 (2010), 042902, 7 pp.
  • 35. Z. Xie, Central Configurations of Collinear Three-body Problem and Singular Surfaces in the Mass Space, Phys. Lett. A. 375 (2011) no. 39, 3392-3398. MR 2826168
  • 36. S. Zhang, Two layer nested regular polygon central configurations in $ \mathbf {R}\sp 3$, Phys. Lett. A, 290 (2001) no. 1, 49-54. MR 1876951 (2002j:70013)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37N05, 70F10, 70F15, 37N30, 70H05, 70F17

Retrieve articles in all journals with MSC (2010): 37N05, 70F10, 70F15, 37N30, 70H05, 70F17


Additional Information

Tiancheng Ouyang
Affiliation: Department of Mathematics, Brigham Young University, Provo, Utah 84602

Zhifu Xie
Affiliation: Department of Mathematics and Computer Science, Virginia State University, Petersburg, Virginia 23806
Email: zxie@vsu.edu

DOI: https://doi.org/10.1090/S0002-9947-2012-05426-2
Keywords: Central configurations, super central configurations, $N$-body problem, geometric equivalence, permutation equivalence, mass equivalence, singular surfaces, relative equilibrium, Descartes’ rule.
Received by editor(s): November 7, 2009
Received by editor(s) in revised form: January 13, 2010, April 4, 2010, and May 8, 2010
Published electronically: February 10, 2012
Additional Notes: The second author was partially supported by RIG Grant (code 2137) from Virginia State University 2008-2009.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society