Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Maximal functions and the additivity of various families of null sets

Author: Juris Steprāns
Journal: Trans. Amer. Math. Soc. 364 (2012), 3555-3584
MSC (2010): Primary 03E17, 42B25
Published electronically: March 8, 2012
MathSciNet review: 2901224
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown to be consistent with set theory that every set of reals of size $ \aleph _1$ is null yet there are $ \aleph _1$ planes in Euclidean 3-space whose union is not null. Similar results are obtained for circles in the plane as well as other geometric objects. The proof relies on results from harmonic analysis about the boundedness of certain maximal operators and a measure-theoretic pigeonhole principle.

References [Enhancements On Off] (What's this?)

  • 1. J. Bourgain.
    Averages in the plane over convex curves and maximal operators.
    J. Analyse Math., 47:69-85, 1986. MR 874045 (88f:42036)
  • 2. R. O. Davies.
    On accessibility of plane sets and differentiation of functions of two real variables.
    Proc. Cambridge Philos. Soc., 48:215-232, 1952. MR 0045795 (13:635d)
  • 3. K. J. Falconer.
    Continuity properties of $ k$-plane integrals and Besicovitch sets.
    Math. Proc. Cambridge Philos. Soc., 87(2):221-226, 1980. MR 553579 (81c:53067)
  • 4. K. J. Falconer.
    The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics.
    Cambridge University Press, Cambridge, 1986. MR 867284 (88d:28001)
  • 5. Kenneth Falconer.
    Fractal geometry.
    John Wiley & Sons Ltd., Chichester, 1990.
    Mathematical foundations and applications. MR 1102677 (92j:28008)
  • 6. Peter Komjáth.
    Talk at summer meeting of the asl.
    Veszprém, Hungary, August 1992.
  • 7. J. M. Marstrand.
    Packing planes in $ {\bf R}\sp {3}$.
    Mathematika, 26(2):180-183 (1980), 1979. MR 575639 (81f:28007)
  • 8. J. M. Marstrand.
    Packing circles in the plane.
    Proc. London Math. Soc. (3), 55(1):37-58, 1987. MR 887283 (88i:28012)
  • 9. Malabika Pramanik and Andreas Seeger.
    $ L\sp p$ regularity of averages over curves and bounds for associated maximal operators.
    Amer. J. Math., 129(1):61-103, 2007. MR 2288738 (2007k:42034)
  • 10. Andrzej Rosłanowski and Saharon Shelah.
    Norms on possibilities. I. Forcing with trees and creatures.
    Mem. Amer. Math. Soc., 141(671):xii+167 pp., 1999. MR 1613600 (2000c:03036)
  • 11. Saharon Shelah and Juris Steprāns.
    Comparing the uniformity invariants of null sets for different measures.
    Adv. Math., 192(2):403-426, 2005. MR 2128705 (2006h:03044)
  • 12. Elias M. Stein.
    Maximal functions. I. Spherical means.
    Proc. Nat. Acad. Sci. U.S.A., 73(7):2174-2175, 1976. MR 0420116 (54:8133a)
  • 13. Michel Talagrand.
    Sur la mesure de la projection d'un compact et certaines familles de cercles.
    Bull. Sci. Math. (2), 104(3):225-231, 1980. MR 592470 (82b:28004)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 03E17, 42B25

Retrieve articles in all journals with MSC (2010): 03E17, 42B25

Additional Information

Juris Steprāns
Affiliation: Department of Mathematics, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

Keywords: Maximal operator, Besicovitch set, Kakeya set, cardinal invariant, proper forcing
Received by editor(s): January 12, 2005
Received by editor(s) in revised form: September 8, 2006, August 4, 2009, May 17, 2010, and June 16, 2010
Published electronically: March 8, 2012
Additional Notes: Research for this paper was partially supported by NSERC of Canada.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society