Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Characteristic classes and existence of singular maps

Authors: Boldizsár Kalmár and Tamás Terpai
Journal: Trans. Amer. Math. Soc. 364 (2012), 3751-3779
MSC (2010): Primary 57R45; Secondary 57R75, 57R25, 57R20
Published electronically: February 17, 2012
MathSciNet review: 2901233
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information


The existence of a corank one map of negative codimension puts strong restrictions on the topology of the source manifold. It implies many vanishing theorems on characteristic classes and often even vanishing of the cobordism class of the source manifold. Most of our results lie deeper than just vanishing of Thom polynomials of the higher singularities. We blow up the singular map along the singular set and then perturb the arising nongeneric corank one map.

References [Enhancements On Off] (What's this?)

  • [An85] Y. Ando, On the elimination of Morin singularities, J. Math. Soc. Japan 37 (1985), no. 3, 471-487. MR 792988 (87h:58018)
  • [An87] -, On the higher Thom polynomials of Morin singularities, Publ. RIMS, Kyoto Univ. 23 (1987), 195-207. MR 792988 (87h:58018)
  • [An01] -, Folding maps and the surgery theory on manifolds, J. Math. Soc. Japan 53 (2001), no. 2, 357-382. MR 1815139 (2002c:57056)
  • [An04] -, Existence theorems of fold maps, Japan J. Math. 30 (2004), 29-73. MR 1815139 (2002c:57056)
  • [An07] -, A homotopy principle for maps with prescribed Thom-Boardman singularities, Trans. Amer. Math. Soc. 359 (2007), 489-515. MR 2255183 (2007j:58046)
  • [At61] M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1961), 125-132. MR 0145549 (26:3080)
  • [BH04] A. Banyaga and D. Hurtubise, A proof of the Morse-Bott lemma, Expo. Math. 22 (2004), 365-373. MR 2075744 (2005b:57062)
  • [Boa67] J. M. Boardman, Singularities of differentiable maps, IHES Publ. Math. 33 (1967), 21-57. MR 0231390 (37:6945)
  • [Ch83] D. S. Chess, A note on the classes $ [S^k_1(f)]$, Proc. Symp. Pure Math. 40 (1983), 221-224. MR 713061 (85f:57020)
  • [Do56] A. Dold, Erzeugende der Thomschen Algebra $ \mathfrak{N}$, Math. Z. 65 (1956), 25-35. MR 0079269 (18:60c)
  • [Ga78] A. M. Gabrielov, Combinatorial formulas for Pontrjagin classes and $ {\rm GL}$-invariant chains. (Russian) Funktsional. Anal. i Prilozhen. 12 (1978), no. 2, 1-7, 95. MR 498893 (80b:57018)
  • [Gl99] J. W. L. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Pure App. Math. 30 (1899), 150-156.
  • [GG73] M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Math. 14, Springer-Verlag, New York, 1973. MR 0341518 (49:6269)
  • [GP07] H. Geiges and F. Pasquotto, A formula for the Chern classes of symplectic blow-ups, J. London Math. Soc. 76 (2007), 313-330. MR 2363418 (2008j:53143)
  • [Mi97] G. Mikhalkin, Blowup equivalence of smooth closed manifolds, Topology 36 (1997), 287-299. MR 1410476 (98f:57046)
  • [MS74] J. Milnor and J. D. Stasheff, Characteristic classes, Ann. of Math. Studies, No. 76, Princeton Univ. Press, Princeton, N. J.; Univ. of Tokyo Press, Tokyo, 1974. MR 0440554 (55:13428)
  • [OSS03] T. Ohmoto, O. Saeki and K. Sakuma, Self-intersection class for singularities and its application to fold maps, Trans. Amer. Math. Soc. 355 (2003), 3825-3838. MR 1990176 (2004g:57047)
  • [Pr08] P. Pragacz, Thom polynomials and Schur functions: Toward the singularities $ A_i(-)$, Real and complex singularities, Contemporary Mathematics 459 (2008), 165-178. MR 2444400 (2010b:58058)
  • [Roh52] V. A. Rohlin, Intrinsic definition of Pontryagin's characteristic cycles. (Russian) Doklady Akad. Nauk SSSR (N.S.) 84 (1952), 449-452. MR 0050276 (14:306c)
  • [Ron71] F. Ronga, Le calcul de la classe de cohomologie entire duale $ \overline \sum {}^k$. (French) Proceedings of Liverpool Singularities-Symposium, I (1969/70), pp. 313-315. Lecture Notes in Math., Vol. 192, Springer, Berlin, 1971. MR 0293648 (45:2725)
  • [Ron72] -, Le calcul des classes duales aux singularités de Boardman dordre deux, Comm. Math. Helv. 47 (1972), 15-35. MR 0309129 (46:8240)
  • [Sad03] R. Sadykov, The Chess conjecture, Alg. Geom. Topol. 3 (2003), 777-789. MR 1997337 (2005a:57027)
  • [SSS10] R. Sadykov, O. Saeki and K. Sakuma, Obstructions to the existence of fold maps, J. Lond. Math. Soc. (2) 81 (2010), no. 2, 338-354. MR 2602999 (2011b:57034)
  • [Sae92] O. Saeki, Notes on the topology of folds, J. Math. Soc. Japan 44 (1992), 551-566. MR 1167382 (93f:57037)
  • [SS98] O. Saeki and K. Sakuma, Maps with only Morin singularities and the Hopf invariant one problem, Math. Proc. Camb. Phil. Soc. 124 (1998), 501-511. MR 1636580 (99h:57058)
  • [Wa60] C. T. C. Wall, Determination of the cobordism ring, Ann. Math. 72 (1960), 292-311. MR 0120654 (22:11403)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57R45, 57R75, 57R25, 57R20

Retrieve articles in all journals with MSC (2010): 57R45, 57R75, 57R25, 57R20

Additional Information

Boldizsár Kalmár
Affiliation: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary

Tamás Terpai
Affiliation: Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Reáltanoda u. 13-15, 1053 Budapest, Hungary

Keywords: Singularity, Morin map, fold map, blowup, Morse-Bott map, cobordism, Dold relations, geometric dimension.
Received by editor(s): June 7, 2010
Received by editor(s) in revised form: December 15, 2010, and January 7, 2011
Published electronically: February 17, 2012
Additional Notes: The first author was partially supported by the Magyary Zoltán Postdoctoral Fellowship and OTKA grant NK81203.
The second author was supported by OTKA grant NK81203.
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society