Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Equivariant Chow cohomology of nonsimplicial toric varieties


Author: Hal Schenck
Journal: Trans. Amer. Math. Soc. 364 (2012), 4041-4051
MSC (2010): Primary 14M25; Secondary 14F43, 13D02, 52B99
DOI: https://doi.org/10.1090/S0002-9947-2012-05409-2
Published electronically: February 17, 2012
MathSciNet review: 2912444
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a toric variety $ X_\Sigma $ determined by a polyhedral fan $ \Sigma \subseteq N$, Payne shows that the equivariant Chow cohomology is the $ \textup {Sym}(N)$-algebra $ C^0(\Sigma )$ of integral piecewise polynomial functions on $ \Sigma $. We use the Cartan-Eilenberg spectral sequence to analyze the associated reflexive sheaf $ \mathcal {C}^0(\Sigma )$ on $ \mathbb{P}_{\mathbb{Q}}(N)$, showing that the Chern classes depend on subtle geometry of $ \Sigma $ and giving criteria for the splitting of $ \mathcal {C}^0(\Sigma )$ as a sum of line bundles. For certain fans associated to the reflection arrangement $ \mathrm {A_n}$, we describe a connection between $ C^0(\Sigma )$ and logarithmic vector fields tangent to $ \mathrm {A_n}$.


References [Enhancements On Off] (What's this?)

  • 1. E. Bifet, C. De Concini, C. Procesi, Cohomology of regular embeddings, Advances in Mathematics 82 (1990), 1-34. MR 1057441 (91h:14052)
  • 2. L. Billera. The algebra of continuous piecewise polynomials, Advances in Mathematics 76 (1989), 170-183. MR 1013666 (90g:13021)
  • 3. L. Billera and L. Rose, A dimension series for multivariate splines, Discrete and Computational Geometry 6 (1991), 107-128. MR 1083627 (92g:41010)
  • 4. M. Brion, Piecewise polynomial functions, convex polytopes and enumerative geometry, Parameter spaces, 25-44, Banach Center Pub 36, Warsaw, 1996. MR 1481477 (99h:14052)
  • 5. M. Brion, Equivariant Chow groups for torus actions, Transform. Groups 2 (1997), 225-267. MR 1466694 (99c:14005)
  • 6. M. Brion, M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. Reine Angew. Math. 482 (1997), 67-92. MR 1427657 (98a:14067)
  • 7. W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge, 1993. MR 1251956 (95h:13020)
  • 8. T. Mcdonald, H. Schenck, Piecewise polynomials on polyhedral complexes, Advances in Applied Mathematics, 42 (2009), 82-93. MR 2475315 (2009k:41013)
  • 9. S. Payne, Equivariant Chow cohomology of toric varieties, Math. Res. Lett. 13 (2006), 29-41. MR 2199564 (2007f:14052)
  • 10. H. Schenck, A spectral sequence for splines, Adv. Appl. Math. 19 (1997), 183-199. MR 1459497 (98i:13031)
  • 11. H. Terao, Generalized exponents of a free arrangement of hyperplanes and Shepard-Todd-Brieskorn formula, Invent. Math. 63 (1981), 159-179. MR 608532 (82e:32018b)
  • 12. H. Terao, Free arrangements of hyperplanes and unitary reflection groups, Proc. Japan Acad. Ser. A 56 (1980), 389-392. MR 596011 (82e:32018a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14M25, 14F43, 13D02, 52B99

Retrieve articles in all journals with MSC (2010): 14M25, 14F43, 13D02, 52B99


Additional Information

Hal Schenck
Affiliation: Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, Illinois 61801
Email: schenck@math.uiuc.edu

DOI: https://doi.org/10.1090/S0002-9947-2012-05409-2
Keywords: Chow ring, toric variety, piecewise polynomial function.
Received by editor(s): March 1, 2010
Received by editor(s) in revised form: June 29, 2010
Published electronically: February 17, 2012
Additional Notes: The author was supported by NSF 0707667
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society