Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Smash products and differential identities


Authors: Chen-Lian Chuang and Yuan-Tsung Tsai
Journal: Trans. Amer. Math. Soc. 364 (2012), 4155-4168
MSC (2010): Primary 16S40, 16S32, 16W25, 16S36, 16S30
DOI: https://doi.org/10.1090/S0002-9947-2012-05454-7
Published electronically: March 21, 2012
MathSciNet review: 2912449
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathbf {U}$ be the universal enveloping algebra of a Lie algebra and $ R$ a $ \mathbf {U}$-module algebra, where $ \mathbf {U}$ is considered as a Hopf algebra canonically. We determine the centralizer of $ R$ in $ R\char93 \mathbf {U}$ with its associated graded algebra. We then apply this to the Ore extension $ R[X;\phi ]$, where $ \phi :X\to \mathrm {Der}(R)$. With the help of PBW-bases, the following is proved for a prime ring $ R$: Let $ Q$ be the symmetric Martindale quotient ring of $ R$. For $ f_i,g_i\in Q[X;\phi ]$, $ \sum _if_irg_i=0$ for all $ r\in R$ iff $ \sum _if_i\otimes g_i=0$, where $ \otimes $ is over the centralizer of $ R$ in $ Q[X;\phi ]$. Finally, we deduce from this Kharchenko's theorem on differential identities.


References [Enhancements On Off] (What's this?)

  • 1. S. A. Amitsur, Derivations in simple rings, Proc. London Math. Soc. (3) $ \mathbf {7}$ (1957), 87-112. MR 0088480 (19:525d)
  • 2. K. I. Beidar, W. S. Martindale, III, A. V. Mikhalev, ``Rings with generalized identities'', Monographs and Textbooks in Pure and Applied Mathematics $ \mathbf {196}$, Marcel Dekker, Inc., New York, 1996. MR 1368853 (97g:16035)
  • 3. V. D. Burkov, On differentially prime rings, (Russian) Uspekhi Mat. Nauk $ \mathbf {35}$(5) (1980), 219-220. (Engl. Transl. Russian Math. Surveys 35(5):253-254.) MR 595145 (82f:16002)
  • 4. C.-L. Chuang and Y.-T. Tsai, Higher derivations of Ore extensions by $ q$-skew derivations, Journal of Pure and Applied Algebra, $ \mathbf {214}$(10) (2010), 1778-1786. MR 2608105
  • 5. C.-L. Chuang, T.-K. Lee, C.-K. Liu and Y.-T. Tsai, Higher Derivations of Ore Extensions, Israel J. Math $ \mathbf {175}$ (2010), 157-178. MR 2607542
  • 6. V. K. Kharchenko, Differential identities of prime rings, (Russian) Algebra i Logika $ \mathbf {17}$(2) (1978), 220-238. (Engl. Transl., Algebra and Logic $ \mathbf {17}$(2) (1978), 154-168.) MR 541758 (81f:16025)
  • 7. V. K. Kharchenko, Differential identities of semiprime rings, (Russian) Algebra i Logika $ \mathbf {18}$(1) (1979), 86-119. (Engl. Transl., Algebra and Logic $ \mathbf {18}$(1) (1979), 58-80.) MR 566776 (81f:16052)
  • 8. A. Leroy and J. Matczuk, The extended centroid and $ X$-inner automorphisms of Ore extensions, J. Algebra $ \mathbf {145}$(1) (1992), 143-177. MR 1144664 (93b:16053)
  • 9. J. Matczuk, Extended centroids of skew polynomial rings, Math. J. Okayama Univ. $ \mathbf {30}$ (1988), 13-20. MR 976726 (89m:16006)
  • 10. S. Montgomery, ``Hopf algebras and their actions on rings'', Regional conference series in mathematics; no. 82, American Mathematical Society, Providence, Rhode Island, 1992. MR 1243637 (94i:16019)
  • 11. C. Reutenauer, ``Free Lie algebras'', London Mathematical Society monographs; new ser. 7, Oxford: Clarendon Press; New York, Oxford University Press, 1993. MR 1231799 (94j:17002)
  • 12. J.-P. Serre, ``Lie algebras and Lie groups: 1964 lectures given at Harvard University'', (1992), 2nd ed., Lecture Notes in Mathematics, 1500, Springer-Verlag: Berlin. MR 1176100 (93h:17001)
  • 13. M. E. Sweedler, ``Hopf Algebras'', Mathematics Lecture Notes Series, 1969, W. A. Benjamin, Inc., New York, 1996. MR 0252485 (40:5705)
  • 14. Y.-T. Tsai and C.-L. Chuang, Quotient Rings of Ore Extensions with More Than One Indeterminate, Commun. Algebra $ \mathbf {36}$(10), (2008), 3608-3615. MR 2458396 (2009k:16054)
  • 15. Y.-T. Tsai, T.-Y. Wu, and C.-L. Chuang, Jacobson radicals of Ore extensions of derivation type, Commun. Algebra $ \mathbf {35}$(3) (2007), 975-982. MR 2305244 (2007m:16045)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16S40, 16S32, 16W25, 16S36, 16S30

Retrieve articles in all journals with MSC (2010): 16S40, 16S32, 16W25, 16S36, 16S30


Additional Information

Chen-Lian Chuang
Affiliation: Department of Mathematics, National Taiwan University, Taipei 106, Taiwan
Email: chuang@math.ntu.edu.tw

Yuan-Tsung Tsai
Affiliation: Department of Applied Mathematics, Tatung University, Taipei 104, Taiwan
Email: yttsai@ttu.edu.tw

DOI: https://doi.org/10.1090/S0002-9947-2012-05454-7
Keywords: Derivations, universal enveloping algebras, centralizers, smash products, Ore extensions, differential identities
Received by editor(s): May 4, 2010
Received by editor(s) in revised form: August 30, 2010
Published electronically: March 21, 2012
Dedicated: To Pjek-Hwee Lee on his retirement
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society