Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Semiconjugacies, pinched Cantor bouquets and hyperbolic orbifolds


Author: Helena Mihaljević-Brandt
Journal: Trans. Amer. Math. Soc. 364 (2012), 4053-4083
MSC (2010): Primary 37F10; Secondary 30D05, 37F30, 37C15, 37D20
DOI: https://doi.org/10.1090/S0002-9947-2012-05541-3
Published electronically: March 22, 2012
MathSciNet review: 2912445
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f:\mathbb{C}\rightarrow \mathbb{C}$ be a transcendental entire map that is subhyperbolic, i.e., the intersection of the Fatou set $ \mathcal {F}(f)$ and the postsingular set $ P(f)$ is compact and the intersection of the Julia set $ \mathcal {J}(f)$ and $ P(f)$ is finite. Assume that no asymptotic value of $ f$ belongs to $ \mathcal {J}(f)$ and that the local degree of $ f$ at all points in $ \mathcal {J}(f)$ is bounded by some finite constant. We prove that there is a hyperbolic map $ g\in \{z\mapsto f(\lambda z):\; \lambda \in \mathbb{C}\}$ with connected Fatou set such that $ f$ and $ g$ are semiconjugate on their Julia sets. Furthermore, we show that this semiconjugacy is a conjugacy when restricted to the escaping set $ I(g)$ of $ g$. In the case where $ f$ can be written as a finite composition of maps of finite order, our theorem, together with recent results on Julia sets of hyperbolic maps, implies that $ \mathcal {J}(f)$ is a pinched Cantor bouquet, consisting of dynamic rays and their endpoints. Our result also seems to give the first complete description of topological dynamics of an entire transcendental map whose Julia set is the whole complex plane.


References [Enhancements On Off] (What's this?)

  • 1. J. M. Aarts - L. G. Oversteegen, `The geometry of Julia sets', Trans. Amer. Math. Soc. 338, no. 2 (1993), 897-918. MR 1182980 (93j:30021)
  • 2. A. F. Beardon - C. Pommerenke, `The Poincaré metric of plane domains', J. London Math. Soc. (2) 18, no. 3 (1978), 475-483. MR 518232 (80a:30020)
  • 3. W. Bergweiler, `Iteration of meromorphic functions', Bull. Amer. Math. Soc. 29, no. 2 (1993), 151-188. MR 1216719 (94c:30033)
  • 4. A. Douady - J. Hubbard, `Etude dynamique des polynômes complexes', Publications Mathèmatique d'Orsay, 84, Université de Paris-Sud (1984). MR 762431 (87f:58072a)
  • 5. D. Drasin and Y. Okuyama, `Singularities of Schröder maps and unhyperbolicity of rational functions', Comput. Methods Funct. Theory 8, no. 1 (2008), 285-302. MR 2419479 (2009d:37078)
  • 6. A. E. Eremenko, `On the iteration of entire functions', Dynamical Systems and Ergodic Theory, Proc. Banach Center Publ. Warsaw 23 (1989), 339-345. MR 1102727 (92c:30027)
  • 7. A. E. Eremenko - M. Y. Lyubich, `Dynamical properties of some classes of entire functions', Ann. Inst. Fourier, Grenoble 42, no. 4 (1992), 989-1020. MR 1196102 (93k:30034)
  • 8. J. Graczyk and G. Światek, `The real Fatou conjecture', Annals of Mathematics Studies, Princeton University Press (1998). MR 1657075 (2000a:37020)
  • 9. J. K. Langley and J.H. Zheng, `On the fixpoints, multipliers and value distribution of certain classes of meromorphic functions', Ann. Acad. Sci. Fenn. 23 (1998), 135-150. MR 1601855 (99b:30044)
  • 10. C. T. McMullen, `Complex dynamics and renormalization', Annals of Mathematics Studies, Princeton University Press 135, 3rd edition (1994). MR 1312365 (96b:58097)
  • 11. H. Mihaljević-Brandt, `A landing theorem for dynamic rays of geometrically finite entire functions', J. London Math. Soc. (2) 81 (2010), 696-714. MR 2650792
  • 12. H. Mihaljević-Brandt, `Topological Dynamics of Transcendental Entire Functions', Ph.D. Thesis, University of Liverpool, 2009.
  • 13. H. Mihaljević-Brandt and J. Peter, `Poincaré functions with spiders' webs', to appear in Proceedings of the AMS.
  • 14. J. Milnor, `Dynamics in one complex variable', Annals of Mathematics Studies, Princeton University Press, Princeton, NJ, Vol. 160, 3rd edition (2006). MR 2193309 (2006g:37070)
  • 15. R. Nevanlinna, `Eindeutige analytische Funktionen', Springer-Verlag/Berlin, Göttingen, Heidelberg, 2nd edition (1953). MR 0057330 (15:208c)
  • 16. H. Poincaré, `Sur une classe nouvelle de transcendantes uniformes', J. Math. Pures Appliquées IV Ser. 6 (1890), 316-365.
  • 17. L. Rempe, `Topological dynamics of exponential maps on their escaping sets', Ergodic Theory Dynamical Systems 26, no. 6 (2006), 1939-1975. MR 2279273 (2008c:37069)
  • 18. L. Rempe, `Rigidity of escaping dynamics for transcendental functions', Acta Math. 203, no. 2 (2009), 235-267. MR 2570071 (2011b:37084)
  • 19. L. Rempe, `The escaping set of the exponential', Ergodic Theory Dynam. Systems 30, no. 2 (2010), 595-599. MR 2599894 (2011h:37069)
  • 20. P. J. Rippon and G. M. Stallard, `Escaping points of entire functions of small growth', Math. Z. 261, no. 3 (2009), 557-570. MR 2471088 (2010a:30043)
  • 21. G. Rottenfußer - D. Schleicher, `Escaping points of the cosine family', Transcendental dynamics and complex analysis, London Mathematical Society Lecture Notes Series, Cambridge University Press 348 (P. J. Rippon and G. M. Stallard, eds.) (2008). MR 2458810 (2009j:37069)
  • 22. G. Rottenfusser, J. Rückert, L. Rempe - D. Schleicher, `Dynamic rays of bounded-type entire functions', Ann. Math. (2) 173, no. 1 (2011), 77-125. MR 2753600
  • 23. D. Schleicher - J. Zimmer, `Periodic points and dynamic rays of exponential maps', Ann. Acad. Sci. Fenn. Math. 28 (2003), 327-354. MR 1996442 (2004e:37068)
  • 24. D. Schleicher, `The dynamical fine structure of iterated cosine maps and a dimension paradox', Duke Math. Journal 136, no. 2 (2007), 343-356. MR 2286634 (2008d:37078)
  • 25. D. Schleicher, `Hausdorff dimension, its properties, and its surprises', American Mathematical Monthly 114 (2007), 509-528. MR 2321254 (2008d:54024)
  • 26. W. P. Thurston, `Geometry and topology of three-manifolds', Princeton Lecture Notes (1979).
  • 27. W. P. Thurston, `On the combinatorics and dynamics of iterated rational maps', Preprint (1984).
  • 28. G. Valiron, `Fonctions analytiques', Presses Universitaires de France (1954). MR 0061658 (15:861a)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37F10, 30D05, 37F30, 37C15, 37D20

Retrieve articles in all journals with MSC (2010): 37F10, 30D05, 37F30, 37C15, 37D20


Additional Information

Helena Mihaljević-Brandt
Affiliation: Mathematisches Seminar der Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
Email: helenam@math.uni-kiel.de

DOI: https://doi.org/10.1090/S0002-9947-2012-05541-3
Received by editor(s): November 27, 2009
Received by editor(s) in revised form: July 5, 2010
Published electronically: March 22, 2012
Additional Notes: This work was supported by the Engineering and Physical Sciences Research Council (EPSRC), grant-code: EP/E05285, and was partly supported by the EU Research Training Network Cody.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society