Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Boundary Harnack principle for $ \Delta+ \Delta^{\alpha/2}$


Authors: Zhen-Qing Chen, Panki Kim, Renming Song and Zoran Vondraček
Journal: Trans. Amer. Math. Soc. 364 (2012), 4169-4205
MSC (2010): Primary 31B25, 60J45; Secondary 47G20, 60J75, 31B05
DOI: https://doi.org/10.1090/S0002-9947-2012-05542-5
Published electronically: March 19, 2012
MathSciNet review: 2912450
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For $ d\geq 1$ and $ \alpha \in (0, 2)$, consider the family of pseudo-differential operators $ \{\Delta + b \Delta ^{\alpha /2}; b\in [0, 1]\}$ on $ \mathbb{R}^d$ that evolves continuously from $ \Delta $ to $ \Delta + \Delta ^{\alpha /2}$. In this paper, we establish a uniform boundary Harnack principle (BHP) with explicit boundary decay rate for non-negative functions which are harmonic with respect to $ \Delta +b \Delta ^{\alpha /2}$ (or, equivalently, the sum of a Brownian motion and an independent symmetric $ \alpha $-stable process with constant multiple $ b^{1/\alpha }$) in $ C^{1, 1}$ open sets. Here a ``uniform'' BHP means that the comparing constant in the BHP is independent of $ b\in [0, 1]$. Along the way, a uniform Carleson type estimate is established for non-negative functions which are harmonic with respect to $ \Delta + b \Delta ^{\alpha /2}$ in Lipschitz open sets. Our method employs a combination of probabilistic and analytic techniques.


References [Enhancements On Off] (What's this?)

  • 1. A. Ancona, Principe de Harnack à la frontière et théorème de Fatou pour un opérateur elliptique dans un domaine lipschitzien. Ann. Inst. Fourier (Grenoble) 28 (1978), 169-213. MR 513885 (80d:31006)
  • 2. D. H. Armitage and S. J. Gardiner, Classical potential theory. Springer-Verlag, 2001. MR 1801253 (2001m:31001)
  • 3. R. F. Bass, Probabilistic Techniques in Analysis. Springer-Verlag, 1995. MR 1329542 (96e:60001)
  • 4. R. F. Bass and K. Burdzy, A boundary Harnack principle in twisted Hölder domains. Ann. Math. 134 (1991), 253-276. MR 1127476 (92m:31006)
  • 5. R. F. Bass and K. Burdzy, A probabilistic proof of the boundary Harnack principle. Seminar on Stochastic Processes (1989), 1-16, Birkhäuser Boston, 1990. MR 1042338 (92c:60106)
  • 6. R. F. Bass and Z.-Q. Chen, Systems of equations driven by stable processes. Probab. Theory Relat. Fields 134 (2006), 175-214. MR 2222382 (2007k:60164)
  • 7. K. Bogdan, The boundary Harnack principle for the fractional Laplacian. Studia Math. 123 (1997), 43-80. MR 1438304 (98g:31005)
  • 8. K. Bogdan, K. Burdzy and Z.-Q. Chen, Censored stable processes. Probab. Theory Relat. Fields 127 (2003), 89-152. MR 2006232 (2004g:60068)
  • 9. K. Bogdan, A. Stos and P. Sztonyk, Potential theory for Lévy stable processes, Bull. Polish Acad. Sci. Math., 50 (2002), 361-372. MR 1948083 (2003m:60125)
  • 10. K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song and Z. Vondraček, Potential analysis of stable processes and its extensions. Lecture Notes in Math, Vol. 1980, Springer, 2009. MR 2569321 (2011i:60140)
  • 11. L. Caffarelli, E. Fabes, S. Mortola and S. Salsa, Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30(4) (1981), 621-640. MR 620271 (83c:35040)
  • 12. L. Caffarelli, S. Salsa and L. Silvestre, Regularity estimates for the solution and the free boundary to the obstacle problem for the fractional Laplacian. Invent. Math. 171(1) (2008), 425-461. MR 2367025 (2009g:35347)
  • 13. L. Caffarelli and L. Silvestre, Regularity theory for fully nonlinear integro-differential equations. Comm. Pure Appl. Math. 62 (2009), 597-638. MR 2494809 (2010d:35376)
  • 14. L. Caffarelli and A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann. of Math. 171(3) (2010), 1903-1930. MR 2680400 (2011m:35281)
  • 15. Z.-Q. Chen, Multidimensional symmetric stable processes. Korean J. Comput. Appl. Math. 6 (1999), 227-266. MR 1687746 (2000f:60115)
  • 16. Z.-Q. Chen, On notions of harmonicity. Proc. Amer. Math. Soc. 137 (2009), 3497-3510. MR 2515419 (2010f:60228)
  • 17. Z.-Q. Chen, P. Kim and R. Song, Heat kernel estimates for $ \Delta + \Delta ^{\alpha /2}$ in $ C^{1,1}$ open sets. J. London Math. Soc. 84 (2011), 58-80. MR 2819690
  • 18. Z.-Q. Chen, P. Kim, R. Song and Z. Vondraček, Sharp Green function estimates for $ \Delta + \Delta ^{\alpha /2}$ in $ C^{1,1}$ open sets and their applications. To appear in Illinois J. Math., 2011.
  • 19. Z.-Q. Chen and T. Kumagai, Heat kernel estimates for stable-like processes on $ d$-sets. Stoch. Proc. Appl. 108 (2003), 27-62. MR 2008600 (2005d:60135)
  • 20. Z.-Q. Chen and T. Kumagai, Heat kernel estimates for jump processes of mixed types on metric measure spaces. Probab. Theory Relat. Fields 140 (2008), 277-317. MR 2357678 (2009e:60186)
  • 21. Z.-Q. Chen and T. Kumagai, A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps. Rev. Mat. Iberoam. 26 (2) (2010), 551-589. MR 2677007 (2011h:47093)
  • 22. Z.-Q. Chen and S. Rohde, Schramm-Loewner equations driven by symmetric stable processes. Comm. Math. Phys. 285 (2009), 799-824. MR 2470906 (2010d:60184)
  • 23. B. Dahlberg, Estimates of harmonic measure. Arch. Rational Mech. Anal. 65 (1977), 275-288. MR 0466593 (57:6470)
  • 24. E. Fabes, N. Garofalo, S. Marín-Malave and S. Salsa, Fatou theorems for some nonlinear elliptic equations. Rev. Mat. Iberoamericana 4(2) (1988), 227-251. MR 1028741 (91e:35092)
  • 25. M. G. Garroni and J. L. Menaldi, Second order elliptic integro-differential problems. Chapman & Hall/CRC Research Notes in Mathematics, 430. Chapman & Hall/CRC, 2002. MR 1911531 (2003i:35002)
  • 26. T. Grzywny and M. Ryznar, Estimates of Green functions for some perturbations of fractional Laplacian. Illinois J. Math. 51(4) (2007), 1409-1438. MR 2417435 (2009i:60141)
  • 27. Q.-Y. Guan, Boundary Harnack inequality for regional fractional Laplacian. arXiv:0705.1614v3 [math.PR]
  • 28. E. R. Jakobsen, K. H. Karlsen and C. La Chioma, Error estimates for approximate solutions to Bellman equations associated with controlled jump-diffusions. Numer. Math. 110 (2008), 221-255. MR 2425156 (2009d:49050)
  • 29. A. Janicki and A. Weron, Simulation and Chaotic Behavior of $ \alpha $-Stable Processes. Dekker, 1994. MR 1306279 (96g:60026)
  • 30. P. Kim and R. Song, Potential theory of truncated stable processes. Math. Z. 256(1) (2007), 139-173. MR 2282263 (2007k:60245)
  • 31. P. Kim and R. Song, Boundary behavior of harmonic functions for truncated stable processes. J. Theoret. Probab. 21 (2008) 287-321. MR 2391246 (2010f:60230)
  • 32. P. Kim, R. Song and Z. Vondraček, Boundary Harnack principle for subordinate Brownian motion. Stoch. Proc. Appl. 119 (2009), 1601-1631. MR 2513121 (2010f:60231)
  • 33. P. Kim, R. Song and Z. Vondraček, On the potential theory of one-dimensional subordinate Brownian motions with continuous components. Potential Anal. 33 (2010), 153-173. MR 2658980 (2011h:60164)
  • 34. J. Klafter, M. F. Shlesinger and G. Zumofen, Beyond Brownian motion. Physics Today 49 (1996), 33-39.
  • 35. R. Mikulyavichyus and G. Pragarauskas, Nonlinear potentials of the Cauchy-Dirichlet problem for the Bellman integro-differential equation. Lithuanian Math. J. 36(2) (1996), 142-173. MR 1432798 (98a:35134)
  • 36. B. Øksendal and A. Sulem, Applied stochastic control of jump diffusions, 2nd edition. Springer, Berlin, 2007. MR 2322248 (2008b:93003)
  • 37. M. Rao, R. Song and Z. Vondraček, Green function estimates and Harnack inequalities for subordinate Brownian motion. Potential Anal. 25 (2006), 1-27. MR 2238934 (2008g:60235)
  • 38. R. Song and Z. Vondraček, Harnack inequality for some discontinuous Markov processes with a diffusion part. Glasnik Mat. 40 (2005), 177-187. MR 2195869 (2008k:60181)
  • 39. R. Song and Z. Vondraček, Parabolic Harnack inequality for the mixture of Brownian motion and stable process. Tohoku Math. J. (2) 59 (2007), 1-19. MR 2321989 (2008b:60171)
  • 40. R. Song and Z. Vondraček, On the relationship between subordinate killed and killed subordinate processes. Elect. Commun. Probab. 13 (2008), 325-336. MR 2415141 (2009f:60091)
  • 41. R. Song and J. M. Wu, Boundary Harnack principle for symmetric stable processes. J. Funct. Anal. 168 (1999), 403-427. MR 1719233 (2001b:60092)
  • 42. P. Sztonyk, Boundary potential theory for stable Lévy processes, Colloq. Math. 95(2) (2003), 191-206. MR 1967420 (2003m:60215)
  • 43. J. M. Wu, Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains. Ann. Inst. Fourier (Grenoble) 28 (1978), 147-167. MR 513884 (80g:31005)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 31B25, 60J45, 47G20, 60J75, 31B05

Retrieve articles in all journals with MSC (2010): 31B25, 60J45, 47G20, 60J75, 31B05


Additional Information

Zhen-Qing Chen
Affiliation: Department of Mathematics, University of Washington, Seattle, Washington 98195
Email: zqchen@uw.edu

Panki Kim
Affiliation: Department of Mathematical Science, Seoul National University, Seoul 151-747, South Korea
Email: pkim@snu.ac.kr

Renming Song
Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
Email: rsong@math.uiuc.edu

Zoran Vondraček
Affiliation: Department of Mathematics, University of Zagreb, Bijenička c. 30, Zagreb, Croatia
Email: vondra@math.hr

DOI: https://doi.org/10.1090/S0002-9947-2012-05542-5
Keywords: Boundary Harnack principle, harmonic function, sub- and super-harmonic function, fractional Laplacian, Laplacian, symmetric $𝛼$-stable process, Brownian motion, Ito’s formula, Lévy system, martingales, exit distribution
Received by editor(s): September 23, 2010
Published electronically: March 19, 2012
Additional Notes: The first author’s research was supported by NSF Grants DMS-0600206 and DMS-0906743.
The second author’s research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Korean government (MEST) (2011-00001251)
The fourth author’s research was supported by MZOS grant 037-0372790-2801 of the Republic of Croatia.
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society