Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An approach to higher order linking invariants through holonomy and curvature


Authors: James J. Hebda and Chichen M. Tsau
Journal: Trans. Amer. Math. Soc. 364 (2012), 4283-4301
MSC (2010): Primary 57M25; Secondary 53C05, 57M27
DOI: https://doi.org/10.1090/S0002-9947-2012-05547-4
Published electronically: March 29, 2012
MathSciNet review: 2912455
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the Milnor-Massey linking invariants through the holonomy and curvature of certain nilpotent connections and their flat quotient connections. Versions of the Porter-Turaev Theorem are proved in the context of de Rham cohomology.


References [Enhancements On Off] (What's this?)

  • 1. R. Bott and L. Tu. Differential Forms in Algebraic Topology, Springer-Verlag, New York-Heidelberg-Berlin, 1982. MR 658304 (83i:57016)
  • 2. K.-T. Chen. Connections, holonomy and path space homology. Proceedings of Symposia in Pure Mathematics 27, Part 1 (1975) 39-52. MR 0440540 (55:13414)
  • 3. K.-T. Chen. Extension of $ C^\infty $ function algebra by integrals and Malcev completion of $ \pi _1$, Advances in Math. 23 (1977) 181-210. MR 0458461 (56:16664)
  • 4. K.-T. Chen. Iterated path integrals, Bull. Amer. Math. Soc. 83 (1977) 831-879. MR 0454968 (56:13210)
  • 5. R. Fenn. Techniques of geometric topology, London Mathematical Society Lecture Note Series, 57, Cambridge University Press, Cambridge, 1983. MR 787801 (87a:57002)
  • 6. R. Hain. Iterated integrals, intersection theory and link groups, Topology 24 (1985) 45-66. Erratum, Topology 25 (1986) 585-586. MR 790675 (86m:57008); MR 862442 (87m:57005)
  • 7. R. Hain. The geometry of the mixed Hodge structure on the fundamental group, Proceedings of Symposia in Pure Mathematics 46, Part 2 (1987) 247-282. MR 927984 (89g:14010)
  • 8. S. Kobayashi and K. Nomizu. Foundations of Differential Geometry, Vol. I, Interscience Publishers-John Wiley & Sons, New York and London, 1963. MR 0152974 (27:2945)
  • 9. T. Levi-Civita. The Absolute Differential Calculus, Dover Publications, Inc., New York, 1977. MR 2422211 (2011b:53031)
  • 10. T. Nagano. Homotopy Invariants in Differential Geometry, American Mathematical Society, Providence, 1970. MR 0268906 (42:3803)
  • 11. V. Penna and M. Spera. Higher order linking numbers, curvature and holonomy, Journal of Knot Theory and Its Ramifications, 11 (2002) 701-723. MR 1918809 (2003g:57010)
  • 12. R. Porter. Milnor's $ \bar \mu $-invariants and Massey products, Trans. Amer. Math. Soc. 257 (1980) 39-71. MR 549154 (81a:57021)
  • 13. H. Reckziegel and E. Wilhelmus. How the curvature generates the holonomy of a connection in an arbitrary fibre bundle, Result. Math. 49 (2006) 339-359. MR 2288249 (2007k:53068)
  • 14. G. de Rham. Variétés différentiables, Hermann, Paris, 1960.
  • 15. L. Schlesinger. Parallelverschiebung und Krümmungstensor, Math. Ann. 99 (1928) 413-434. MR 1512459
  • 16. C. Teleman. Généralisation du groupe fondamental, Annales Scientifiques de l'É.N.S 77 (1960) 195-234. MR 0124068 (23:A1385c)
  • 17. J. Taveres. Chen integrals, generalized loops and loop calculus, Intl. J. Mod. Phys. A 9 (1994) 4511-4548. MR 1295759 (95i:58021)
  • 18. V. Turaev. The Milnor invariants and Massey products. Zap. Naučn. Sem. Leningrad. Otel. Mat. Inst. Steklov. (LOMI) 66 (1976) 189-203, 209-210. (Russian) Translation in: Journal of Soviet Mathematics 12 (1979) 128-137. MR 0451251 (56:9538)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 57M25, 53C05, 57M27

Retrieve articles in all journals with MSC (2010): 57M25, 53C05, 57M27


Additional Information

James J. Hebda
Affiliation: Department of Mathematics and Computer Science, Saint Louis University, St. Louis, Missouri 63103
Email: hebdajj@slu.edu

Chichen M. Tsau
Affiliation: Department of Mathematics and Computer Science, Saint Louis University, St. Louis, Missouri 63103
Email: tsaumc@slu.edu

DOI: https://doi.org/10.1090/S0002-9947-2012-05547-4
Keywords: Nilpotent connection, holonomy, curvature, Milnor numbers, Massey product, Porter–Turaev Theorem
Received by editor(s): September 25, 2009
Received by editor(s) in revised form: December 15, 2010
Published electronically: March 29, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society