On the solvability of planar complex linear vector fields

Author:
François Treves

Journal:
Trans. Amer. Math. Soc. **364** (2012), 4629-4662

MSC (2010):
Primary 35A01, 35F05; Secondary 35D30, 35H10

Published electronically:
April 12, 2012

MathSciNet review:
2922604

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The article discusses the local solvability, or lack thereof, of vector fields whose coefficients are complex-valued linear functions in (here called *complex* *linear*). It is proved that such a vector field is locally solvable in if and only if it is locally solvable and does not have compact orbits in the complement of its critical set or, equivalently, its Meziani number is different from zero.

**[Bergamasco-Meziani, 2005]**Adalberto P. Bergamasco and Abdelhamid Meziani,*Solvability near the characteristic set for a class of planar vector fields of infinite type*, Ann. Inst. Fourier (Grenoble)**55**(2005), no. 1, 77–112 (English, with English and French summaries). MR**2141289****[Cordaro-Gong, 2004]**Paulo D. Cordaro and Xianghong Gong,*Normalization of complex-valued planar vector fields which degenerate along a real curve*, Adv. Math.**184**(2004), no. 1, 89–118. MR**2047850**, 10.1016/S0001-8708(03)00139-7**[Hörmander, 1959]**Lars Hörmander,*On the range of convolution operators*, Ann. of Math. (2)**76**(1962), 148–170. MR**0141984****[Hörmander, 1969]**Lars Hörmander,*Linear partial differential operators*, Third revised printing. Die Grundlehren der mathematischen Wissenschaften, Band 116, Springer-Verlag New York Inc., New York, 1969. MR**0248435****[Hörmander, 1985]**Lars Hörmander,*The analysis of linear partial differential operators. IV*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 275, Springer-Verlag, Berlin, 1985. Fourier integral operators. MR**781537****[Lojasiewiccz, 1965]**Lojasiewicz, S., Notes, Institut Hautes Études, Bures-sur-Yvette, 1965.**[Meziani, 2001]**Abdelhamid Meziani,*On planar elliptic structures with infinite type degeneracy*, J. Funct. Anal.**179**(2001), no. 2, 333–373. MR**1809114**, 10.1006/jfan.2000.3695**[Meziani, 2004]**Abdelhamid Meziani,*Elliptic planar vector fields with degeneracies*, Trans. Amer. Math. Soc.**357**(2005), no. 10, 4225–4248 (electronic). MR**2159708**, 10.1090/S0002-9947-04-03658-X**[Miwa, 1973]**Tetsuji Miwa,*On the existence of hyperfunction solutions of linear differential equations of the first order with degenerate real principal symbols*, Proc. Japan Acad.**49**(1973), 88–93. MR**0348236****[Müller, 1992]**Detlef Müller,*Local solvability of first order differential operators near a critical point, operators with quadratic symbols and the Heisenberg group*, Comm. Partial Differential Equations**17**(1992), no. 1-2, 305–337. MR**1151265**, 10.1080/03605309208820843**[Nagano, 1966]**Tadashi Nagano,*Linear differential systems with singularities and an application to transitive Lie algebras*, J. Math. Soc. Japan**18**(1966), 398–404. MR**0199865****[Nirenberg-Treves, 1963]**L. Nirenberg and F. Treves,*Solvability of a first order linear partial differential equation*, Comm. Pure Appl. Math.**16**(1963), 331–351. MR**0163045****[Treves, 1971]**François Trèves,*Analytic-hypoelliptic partial differential equations of principal type*, Comm. Pure Appl. Math.**24**(1971), 537–570. MR**0296509****[Treves, 1992]**François Trèves,*Hypo-analytic structures*, Princeton Mathematical Series, vol. 40, Princeton University Press, Princeton, NJ, 1992. Local theory. MR**1200459****[Treves, 2009]**François Treves,*On the solvability of vector fields with real linear coefficients*, Proc. Amer. Math. Soc.**137**(2009), no. 12, 4209–4218. MR**2538582**, 10.1090/S0002-9939-09-10033-3

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2010):
35A01,
35F05,
35D30,
35H10

Retrieve articles in all journals with MSC (2010): 35A01, 35F05, 35D30, 35H10

Additional Information

**François Treves**

Affiliation:
12002 Spruce Canyon Circle, Golden, Colorado 80403

Email:
treves.jeanfrancois@gmail.com

DOI:
https://doi.org/10.1090/S0002-9947-2012-05429-8

Received by editor(s):
November 29, 2009

Received by editor(s) in revised form:
July 22, 2010

Published electronically:
April 12, 2012

Article copyright:
© Copyright 2012
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication.