Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Fractional derivative of Abel type on a half-line

Author: Elena I. Kaikina
Journal: Trans. Amer. Math. Soc. 364 (2012), 5149-5172
MSC (2010): Primary 35Q35
Published electronically: May 7, 2012
MathSciNet review: 2931325
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the initial-boundary value problem on a half-line for an evolution equation

$\displaystyle \left ( \partial _{t}+\left \vert \partial _{x}\right \vert ^{\alpha }\right ) u(x,t)=f(x,t),t>0,\ x>0, $

with a fractional derivative of Abel type

$\displaystyle \text {(0.1)\qquad \qquad \qquad \qquad \qquad }\left \vert \part... ... _{x}^{\left [ \alpha \right ] +1}u, \text {\qquad \qquad \qquad \qquad \quad }$    

where $ \left [ \alpha \right ] $ denotes the integer part of number $ \alpha >0,\alpha $ is not equal to an integer, and

$\displaystyle \mathcal {R}^{\alpha }u=\frac {1}{2\Gamma (\alpha )\sin (\frac {\... ...y }\frac {\mathrm {sign}(x-y)u(y)}{\left \vert x-y\right \vert ^{1-\alpha }}dy $

is the modified Riesz potential. We study traditionally important problems of a theory of partial differential equations, such as existence and uniqueness of solution. We propose a new method of solution. Also we get a closed form of the solution.

References [Enhancements On Off] (What's this?)

  • 1. Dong, Jianping; Xu, Mingyu. Applications of continuity and discontinuity of a fractional derivative of the wave functions to fractional quantum mechanics. J. Math. Phys. 49 (2008), no. 5, 052105, 16 pp. MR 2421898 (2009h:81088)
  • 2. Galucio, A. C.; Deü, J.-F.; Dubois, F. The $ G^\alpha $-scheme for approximation of fractional derivatives: application to the dynamics of dissipative systems. J. Vib. Control 14 (2008), no. 9-10, 1597-1605. MR 2462967 (2009k:65111)
  • 3. Hayashi, N.; Kaikina, E. I.; Naumkin, P. I.; Shishmarev, I. A. Asymptotics for dissipative nonlinear equations. Lecture Notes in Mathematics, 1884. Springer-Verlag, Berlin, 2006, 557 pp. MR 2230524 (2009d:35001)
  • 4. Hayashi, Nakao; Kaikina, Elena. Nonlinear theory of pseudodifferential equations on a half-line. North-Holland Mathematics Studies, 194. Elsevier Science B.V., Amsterdam, 2004, 319 pp. MR 2031425 (2005b:35309)
  • 5. Kaikina, Elena I. Subcritical pseudodifferential equation on a half-line with nonanalytic symbol. Differential Integral Equations 18 (2005), no. 12, 1341-1370. MR 2174976 (2006f:35311)
  • 6. Kaikina, Elena I. Pseudodifferential operator with a nonanalytic symbol on a half-line, J. of Mathematical Physics 48, (2007), no. 11, 1341-1370. MR 2370252 (2008k:35521)
  • 7. Kilbas, A. A.; Srivastava, Hari M.; Trujillo, Juan J. Theory and applications of fractional differential equations. North-Holland Mathematics Studies, 204. Elsevier Science B.V., Amsterdam, 2006. MR 2218073 (2007a:34002)
  • 8. Lakshmikantham, V.; Leela, S.; Vasundhara, Devi. Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009
  • 9. Naumkin, P. I.; Shishmarev, I. A. Nonlinear Nonlocal Equations in the Theory of Waves, Translations of Monographs, 133, A.M.S., Providence, R.I., 1994. MR 1261868 (94m:35230)
  • 10. Ortigueira, Manuel Duarte; Batista, Arnaldo Guimarães. On the relation between the fractional Brownian motion and the fractional derivatives. Phys. Lett. A 372 (2008), no. 7, 958-968. MR 2393587 (2009b:60121)
  • 11. Ostrovsky, L. A. Short-wave asymptotics for weak-shock waves and solitons in mechanics, Int. J. Non-Linear Mechanics, 11 (1976), pp. 401-416. MR 0443516 (56:1885)
  • 12. Ott, E.; Sudan, R. N. Nonlinear theory of ion acoustic waves with Landau damping, Phys. Fluids, 12, no. 11 (1969), pp. 2388-2394. MR 0258349 (41:2996)
  • 13. Rossikhin, Yu. A.; Shitikova, M. V. Fractional-derivative viscoelastic model of the shock interaction of a rigid body with a plate. J. Engrg. Math. 60 (2008), no. 1, 101-113. MR 2374232 (2008j:74011)
  • 14. Samko, S. G.; Kilbas, A. A.; Marichev, O. I. Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach, Yverdon, 1993. MR 1347689 (96d:26012)
  • 15. Silva, Manuel F.; Tenreiro Machado, J. A.; Barbosa, Ramiro S. Using fractional derivatives in joint control of hexapod robots. J. Vib. Control 14 (2008), no. 9-10, 1473-1485. MR 2463073
  • 16. Tarasov, Vasily E. Differential equations with fractional derivative and universal map with memory. J. Phys. A 42 (2009), no. 46, 465102, 13 pp. 37. MR 2552008

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35Q35

Retrieve articles in all journals with MSC (2010): 35Q35

Additional Information

Elena I. Kaikina
Affiliation: Instituto de Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán, Mexico

Keywords: Initial-boundary value problem, Green function, fractional derivative
Received by editor(s): June 11, 2010
Received by editor(s) in revised form: August 20, 2010
Published electronically: May 7, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society