Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Character varieties


Author: Adam S. Sikora
Journal: Trans. Amer. Math. Soc. 364 (2012), 5173-5208
MSC (2010): Primary 14D20; Secondary 14L24, 57M27
DOI: https://doi.org/10.1090/S0002-9947-2012-05448-1
Published electronically: May 15, 2012
MathSciNet review: 2931326
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study properties of irreducible and completely reducible representations of finitely generated groups $ \Gamma $ into reductive algebraic groups $ G.$ In particular, we study the geometric invariant theory of the $ G$ action on the space of $ G$-representations of $ \Gamma $ by conjugation.

Let $ X_G(\Gamma )$ be the $ G$-character variety of $ \Gamma .$ We prove that for every completely reducible, scheme smooth $ \rho :\Gamma \to G$

$\displaystyle T_{[\rho ]}\, X_G(\Gamma )\simeq T_0\,\big (H^1(\Gamma ,Ad\,\rho )//S_\Gamma \big ),$

where $ H^1(\Gamma ,Ad\,\rho )$ is the first cohomology group of $ \Gamma $ with coefficients in the Lie algebra $ \mathfrak{g}$ of $ G$ twisted by $ \Gamma \stackrel {\rho }{\longrightarrow } G\stackrel {Ad}{\longrightarrow } GL(\mathfrak{g})$ and $ S_\Gamma $ is the centralizer of $ \rho (\Gamma )$ in $ G.$ The condition of $ \rho $ being scheme smooth is very important as there are groups $ \Gamma $ such that

$\displaystyle dim\, T_{[\rho ]}\, X_G(\Gamma )< T_0\, H^1(\Gamma ,Ad\, \rho ),$

for a Zariski open subset of points in $ X_G(\Gamma ).$ We prove, however, that all irreducible representations of surface groups are scheme smooth.

Let $ M$ be an orientable $ 3$-manifold with a connected boundary $ F$ of genus $ g\geq 2.$ Let $ X_G^g(F)$ be the subset of the $ G$-character variety of $ \pi _1(F)$ composed of conjugacy classes of good representations $ \rho : \Gamma \to G,$ i.e., irreducible representations such that the centralizer of $ \rho (\Gamma )$ is the center of $ G.$ By a theorem of Goldman, $ X_G^g(F)$ is a holomorphic symplectic manifold. We prove that the set of good $ G$-representations of $ \pi _1(F)$ which extend to representations of $ \pi _1(M)$ is a complex isotropic subspace of $ X_G^g(F).$ It is Lagrangian, if these representations correspond to reduced points of the $ G$-character variety of $ M$. It is an open problem whether it is always the case.


References [Enhancements On Off] (What's this?)

  • [AM] S. Akbulut and J. McCarthy, Casson's invariant for oriented homology $ 3$-spheres an exposition, Mathematical Notes, 36. Princeton University Press, Princeton, NJ, 1990. MR 1030042 (90k:57017)
  • [At] M. Atiyah, Geometry and Physics of Knots, Cambridge University Press, 1990. MR 1078014 (92b:57008)
  • [AB] M. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983) 523-615. MR 702806 (85k:14006)
  • [AP] S. Abeasis and M. Pittaluga, On a minimal set of generators for the invariants of $ 3\times 3$ matrices, Comm. in Alg. 17 (1989), no. 2, 487-499. MR 978487 (90d:15021)
  • [AMW] A. Alekseev, E. Meinrenken and C. Woodward, Duistermaat-Heckman measures and moduli spaces of flat bundles over surfaces. Geom. Funct. Anal. 12 (2002), no. 1, 1-31. MR 1904554 (2003d:53151)
  • [Au] M. Audin, Lectures on gauge theory and integrable systems, in Gauge theory and symplectic geometry (Montreal, PQ, 1995), 1-48, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 488, Kluwer Acad. Publ., Dordrecht, 1997. MR 1461568 (99f:58028)
  • [Ba] S. Baseilhac, Chern Simons theory in dimension three, www-fourier.ujf-grenoble.fr/
    $ \sim $baseilha
  • [Be] L. Ben Abdelghani, Variéte des caractères et slice étale de l'espace des représentations d'un group, Ann. de la faculté des sciences de Toulouse, 11 (2002) no. 6, 19-32. MR 1986380 (2004h:14067)
  • [BC1] H. U. Boden and C. L. Curtis, Splicing and the $ SL_{2}(\mathbb{C})$ Casson invariant, Proc. Amer. Math. Soc. 136 (2008), no. 7, 2615-2623, arXiv: 0707.4134. MR 2390534 (2009c:57022)
  • [BC2] H. U. Boden and C. L. Curtis, The $ SL_{2}(C)$ Casson invariant for Seifert fibered homology spheres and surgeries on twist knots, J. Knot Theory Ramifications 15 (2006), no. 7, 813-837. MR 2264157 (2007g:57017)
  • [BHe] H. Boden and C. Herald, The $ SU(3)$ Casson invariant for integral homology 3-spheres, J. Differential Geom. 50 (1998), 147-206. MR 1678493 (2000d:57011)
  • [BK1] V. V. Benyash-Krivets, The transcendence basis of the field of functions of the variety of characters of a free group, Dokl. Akad. Nauk BSSR 33 (1989), no. 4, 297-301. MR 1000642 (90j:20026)
  • [BK2] V. V. Benyash-Krivets, Varieties of two-dimensional characters of groups, and amalgamated products, Dokl. Nats. Akad. Nauk Belarusi 44 (2000), no. 1, 5-7. MR 1776637 (2001d:20007)
  • [BK3] V. V. Benyash-Krivets, Character varieties of finitely generated groups, Vestsi Nats. Akad. Navuk Belarusi Ser. Fiz.-Mat. Navuk, (2002), no. 1, 19-24, MR 1952806 (2003h:20015)
  • [BKCh] V. V. Benyash-Krivets and V. I. Chernousov, Varieties of representations of fundamental groups of compact nonoriented surfaces, Mat. Sb. 188 (1997), no. 7, 47-92; translation in Sb. Math. 188 (1997), no. 7, 997-1039. MR 1474855 (98j:57002)
  • [BHMV] C. Blanchet, N. Habegger and G. Masbaum, and P. Vogel. Topological quantum field theories derived from the Kauffman bracket, Topology, 34(4) (1995), 883-927. MR 1362791 (96i:57015)
  • [BF] H. U. Boden and S. Friedl, Metabelian SL(n,C) representations of knot groups, Pacific J. Math. 238 (2008), no. 1, 7-25. MR 2443505 (2010c:57007)
  • [BB] M. Boileau and S. Boyer, On character varieties, sets of discrete characters, and non-zero degree maps, arXiv.org: 0701384
  • [Bo] A. Borel, Linear Algebraic Groups, 2nd enlarged ed., Springer 1991. MR 1102012 (92d:20001)
  • [BLZ] S. Boyer, E. Luft and X. Zhang, On the algebraic components of the $ \textup {SL}(2,\mathbb{C})$ character varieties of knot exteriors, Topology 41 (2002), no. 4, 667-694. MR 1905834 (2003g:57030)
  • [BMR] M. Bate, B. Martin and G. Röhrle, A geometric approach to complete reducibility, Invent. Math. 161 (2005), 177-218. MR 2178661 (2007k:20101)
  • [BN] S. Boyer and A. Nicas, Varieties of group representations and Casson's invariant for rational homology 3-spheres, Trans. Amer. Math. Soc. 322 (1990), 507-522. MR 972701 (92a:57020)
  • [BZ1] S. Boyer and X. Zhang, Finite Dehn surgery on knots, J. Amer. Math. Soc. 9 (1996), 1005-1050. MR 1333293 (97h:57013)
  • [BZ2] S. Boyer and X. Zhang, On Culler-Shalen seminorms and Dehn filling, Annals of Math. 148 (1998), 737-801. MR 1670053 (2000d:57028)
  • [BZ3] S. Boyer and X. Zhang, On simple points of character varieties of 3-manifolds, Knots in Hellas '98 (Delphi), 27-35, Ser. Knots Everything, 24, World Sci. Publ., 2000. MR 1865698 (2002i:57027)
  • [Br] K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, Springer, 1982. MR 672956 (83k:20002)
  • [BCo] S. Bratholdt and D. Cooper, On the topology of the character variety of a free group, Dedicated to the memory of Marco Reni, Rend. Instit. Mat. Univ. Trieste 32 (2001), suppl. 1, 45-53 (2002). MR 1889465 (2003d:14072)
  • [BH] G. W. Brumfiel and H. M. Hilden, $ Sl(2)$ Representations of Finitely Presented Groups, Contemp. Math. 187 (1995). MR 1339764 (96g:20004)
  • [Bu] D. Bullock, Rings of $ SL_{2}(\mathbb{C})$-characters and the Kauffman bracket skein module, Comment. Math. Helv. 72 (1997), 521-542. MR 1600138 (98k:57008)
  • [BIW] M. Burger, A. Iozzi and A. Wienhard, Surface group representations with maximal Toledo invariant, Ann. of Math. 172 (2010), no.1, 517-566. MR 1979350 (2004e:53076)
  • [CHM] M. A. de Cataldo, T. Hausel and L. Migliorini, Topology of Hitchin systems and Hodge theory of character varieties, arXiv:1004.1420
  • [CM] L. Charles and J. Marché, Multicurves and regular functions on the representation variety of a surface in $ SU(2),$ arXiv: 0901.3064
  • [CL] D. Cooper and D. Long, Representation theory and the A-polynomial of a knot, Chaos Solitons Fractals 9 (1998), 749-763. MR 1628754 (99c:57013)
  • [CCGLS] D. Cooper, M. Culler, H. Gillet, D.D. Long and P. B. Shalen, Plane Curves Associated to Character Varieties of $ 3$-manifolds, Inventiones Math. 118 (1994), 47-84. MR 1288467 (95g:57029)
  • [CLO] D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, An introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd edition, Springer 1992. MR 1189133 (93j:13031)
  • [CS] M. Culler and P. B. Shalen, Varieties of group representations and splittings of 3-manifolds, Ann. of Math. 117 (1983), 109-146. MR 683804 (84k:57005)
  • [Cu] C. L. Curtis, An intersection theory count of the SL2(C)-representations of the fundamental group of a 3-manifold, Topology 40 (2001), 773-787. MR 1851563 (2002k:57022)
  • [Da] G. Daskalopoulos, The topology of the space of stable bundles on a compact Riemann surface, J. Differential Geom. 36 (3) (1992) 699-746. MR 1189501 (93i:58026)
  • [DDW] G. Daskalopoulos, S. Dostoglou and R. Wentworth, On the Morgan-Shalen compactification of the $ \textup {SL}(2,C)$ character varieties of surface groups, Duke Math. J. 101 (2000), no. 2, 189-207. MR 1738182 (2000m:32024)
  • [DWWW] G. Daskalopoulos, J. Weitsman, R. Wentworth and G. Wilkin, Morse Theory and Hyper-Kahler Kirwan Surjectivity for Higgs Bundles, arXiv:math/0701560.
  • [DWW] G. D. Daskalopoulos, R. A. Wentworth and G. Wilkin, Cohomology of $ SL(2,C)$ character varieties of surface groups and the action of the Torelli group, arXiv:0808.0131.
  • [Do] I. Dolgachev, Introduction to geometric invariant theory, Notes of the Series of Lectures held at the Seoul National University, 1994. MR 1312159 (96a:14019)
  • [Du] N. Dunfield, Cyclic surgery, degrees of maps of character curves, and volume rigidity for hyperbolic manifolds, Invent. Math. 136 (1999), 623-657. MR 1695208 (2000d:57022)
  • [DG] N. M. Dunfield, S. Garoufalidis, Nontriviality of the A-polynomial for knots in $ S^3$, Algebr. Geom. Topol. 4 (2004), 1145-1153. MR 2113900 (2005i:57004)
  • [EH] D. Eisenbud and J. Harris, The geometry of schemes, Graduate Texts in Mathematics, Springer 2000. MR 1730819 (2001d:14002)
  • [FL1] C. Florentino and S. Lawton, The topology of moduli spaces of free group representations. MR 2529483 (2010h:14075)
  • [FL2] C. Florentino and S. Lawton, Singularities of free group character varieties, arXiv:0907.
    4720
  • [Fo] J. Fogarty, Invariant Theory, W. A. Benjamin, Inc. 1969. MR 0240104 (39:1458)
  • [Fr] D. S. Freed, Classical Chern-Simons Theory, 1, Adv. in Math. 113 (1995), 2371920-303. MR 1337109 (96h:58019)
  • [FG] C. Frohman and R. Gelca, Skein modules and the noncommutative torus, Trans. Amer. Math. Soc. 352 (2000), 4877-4888. MR 1675190 (2001b:57014)
  • [FGL] C. Frohman, R. Gelca and W. LoFaro, The A-polynomial from the noncommutative viewpoint, Trans. Amer. Math. Soc. 354 (2001), 735-747. MR 1862565 (2003a:57020)
  • [FH] W. Fulton and J. Harris, Representation Theory, A First Course, Graduate Texts in Mathematics, Springer, 1991. MR 1153249 (93a:20069)
  • [GGM] O. Garcia-Prada, P. B. Gothen and I. Mundet i Riera, Higgs bundles and surface group representations in the real symplectic group, arXiv:0809.0576.
  • [Ga] S. Garoufalidis, On the characteristic and deformation varieties of a knot, Proceedings of the Casson Fest, 291-309, Geom. Topol. Monogr., 7, Geom. Topol. Publ., Coventry, 2004. MR 2172488 (2006j:57028)
  • [Ge] R. Gelca, On the relation between the $ A$-polynomial and the Jones polynomial, Proc. Amer. Math. Soc. 130 (2002), no. 4, 1235-1241. MR 1873802 (2002m:57015)
  • [Go1] W. M. Goldman, Representations of fundamental groups of surfaces, Geometry and topology (College Park, Md., 1983/84), 95-117, Lecture Notes in Math., 1167, Springer, Berlin, 1985. MR 827264 (87j:32068)
  • [Go2] W. Goldman, The symplectic nature of fundamental groups of surfaces, Adv. in Math. 54 (1984), 200-225 MR 762512 (86i:32042)
  • [Go3] W. M. Goldman, Geometric structures on manifolds and varieties of representations. Geometry of group representations, (Boulder, CO, 1987), 169-198, Contemp. Math., 74, Amer. Math. Soc., 1988. MR 957518 (90i:57024)
  • [Go4] W. M. Goldman, Invariant functions on Lie groups and Hamiltonian flows of surface group representations, Invent. Math. 85 (1986), no. 2, 263-302. MR 846929 (87j:32069)
  • [Go5] W. M. Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988), no. 3, 557-607. MR 952283 (89m:57001)
  • [Go6] W. Goldman, Action of the modular group on real $ SL(2)$-characters of a one-holed torus, Geom. and Top. 7 (2003), 443-486. MR 2026539 (2004k:57001)
  • [Go7] W. M. Goldman, The complex-symplectic geometry of $ \textup {SL}(2,\mathbb{C})$-characters over surfaces. Algebraic groups and arithmetic, 375-407, Tata Inst. Fund. Res., Mumbai, 2004. MR 2094117 (2005i:53110)
  • [Go8] W. Goldman, An ergodic action of the outer automorphism group of a free group, Geom. Funct. Anal.17 (2007), no. 3, 793-805. MR 2346275 (2008g:57001)
  • [Go9] W. Goldman, Trace coordinates on Fricke spaces of some simple hyperbolic surfaces, preprint.
  • [GM1] W. M. Goldman and J. J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 153-158. MR 929091 (89f:53100)
  • [GM2] W. Goldman and J. Millson, The deformation theory of representations of fundamental groups of Kähler manifolds, Publ. Math. d'I. H. E. S., 67 (1988), 43-96. MR 972343 (90b:32041)
  • [GM] F. González-Acuña and J. M. Montesinos-Amilibia, On the character variety of group representations in $ \textup {SL}(2,C)$ and $ \textup {PSL}(2,C)$, Math. Z. 214 (1993), no. 4, 627-652. MR 1248117 (94k:57022)
  • [GO] V. V. Gorbatsevich and A. L. Onishchik, Lie Transformation Groups, Encyclopaedia of Mathematical Sciences, Vol. 20, Editor: A.L. Onishchik, Springer, 1993. MR 1306739
  • [GW] O. Guichard and A. Wienhard, Topological Invariants of Anosov Representations, J. of Topology, to appear, arXiv:0907.0273v2.
  • [Gu] S. Gukov, Three-dimensional quantum gravity, Chern-Simons theory, and the A-polynomial. Comm. Math. Phys. 255 (2005), no. 3, 577-627. MR 2134725 (2006f:58029)
  • [Ha] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Springer, 1977. MR 0463157 (57:3116)
  • [HLR] T. Hausel, E. Letellier and F. Rodriguez-Villegas, Topology of character varieties and representations of quivers. C. R. Math. Acad. Sci. Paris 348 (2010), no. 3-4, 131-135. MR 2600063
  • [HT] T. Hausel and M. Thaddeus, Relations in the cohomology ring of the moduli space of rank 2 Higgs bundles. J. Amer. Math. Soc. 16 (2003), no. 2, 303-327. MR 1949162 (2004b:14055)
  • [HP1] M. Heusener and J. Porti, Deformations of reducible representations of $ 3$-manifold groups into $ PSL(2,\mathbb{C}),$ Alg. Geom. Top 5 (2005), 965-997. MR 2171800 (2006e:57016)
  • [HP2] M. Heusener and J. Porti, The variety of characters in $ \textup {PSL}_{2}(\mathbb{C})$, Bol. Soc. Mat. Mexicana 10 (2004), no. 3, Special Issue, 221-237. MR 2199350 (2006m:57020)
  • [HLM1] H. M. Hilden, M. T. Lozano and J. M. Montesinos-Amilibia, On the character variety of tunnel number $ 1$ knots, J. London Math. Soc. (2) 62 (2000), no. 3, 938-950. MR 1794296 (2001i:57009)
  • [HLM2] H. M. Hilden, M. T. Lozano and J. M. Amilibia-Montesinos, Character varieties and peripheral polynomials of a class of knots, J. Knot Theory Ramifications 12 (2003), no. 8, 1093-1130. MR 2017984 (2004i:57005)
  • [Hi1] N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. (3) 55 (1987), 59-126. MR 887284 (89a:32021)
  • [Hi2] N. J. Hitchin, Lie groups and Teichmüller space, Topology 31 (1992), 449-473. MR 1174252 (93e:32023)
  • [Ho1] R. Horowitz, Characters of free groups represented in the two-dimensional special linear group, Comm. Pure Appl. Math. 25 (1972), 635-649. MR 0314993 (47:3542)
  • [Ho2] R. Horowitz, Induced automorphisms on Fricke characters on free groups, Trans. of AMS 208 (1975), 41-50. MR 0369540 (51:5773)
  • [HS] J. Hoste and P. Shanahan, A formula for the A-polynomial of twist knots, J. Knot Theory Ramifications, 13 (2004), no. 2, 193-209. MR 2047468 (2005c:57006)
  • [Hu] J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in mathematics, Springer, 1975. MR 0396773 (53:633)
  • [Je1] L. C. Jeffrey, Symplectic forms on moduli spaces of flat connections on $ 2$-manifolds, Geometric topology (Athens, GA, 1993), 268-281, AMS/IP Stud. Adv. Math., 2.1, Amer. Math. Soc., Providence, RI, 1997. MR 1470732 (99b:58043)
  • [Je2] L. Jeffrey, Group cohomology construction of the cohomology of moduli spaces of flat connections on $ 2$ manifolds, Duke Math. J. 77 (1995), 407-429. MR 1321064 (96m:58029)
  • [Je3] L. C. Jeffrey, Flat connections on oriented 2-manifolds, Bull. London Math. Soc. 37 (2005), 1-14. MR 2105813 (2005i:53111)
  • [JK] L. C. Jeffrey and F. C. Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. of Math. (2) 148 (1998), no. 1, 109-196. MR 1652987 (2000c:14045)
  • [JW] L. C. Jeffrey and J. Weitsman, Half density quantization of the moduli space of flat connections and Witten's semiclassical manifold invariants, Topology 32(3) 1993, 509-529. MR 1231958 (95f:58038)
  • [JM] D. Johnson and J. J. Millson, Deformation Spaces Associated to Compact Hyperbolic Manifolds, in ``Discrete Groups in Geometry and Analysis'', Proceedings of a Conference Held at Yale Univeristy in Honor of G.D. Mostow on his Sixtieth Birthday.
  • [Ka1] M. Kapovich, lecture at CRM, Montreal 2001.
  • [Ka2] M. Kapovich, private communication.
  • [KM] M. Kapovich and J. J. Millson, On representation varieties of Artin groups, projective arrangements and the fundamental groups of smooth complex algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 88 (1998), 5-95 (1999). MR 1733326 (2001d:14024)
  • [KK] P. Kirk and E. Klassen, Chern-Simons invariants of $ 3$-manifolds decomposed along tori and the circle bundle over the representation space of $ T^2,$ Comm. Math. Phys. 153 (1993) no. 3, 521-557. MR 1218931 (94d:57042)
  • [KrM] P. Kronheimer and T. Mrowka, Dehn surgery, the fundamental group and SU(2), Math. Res. Lett. 11 (2004), no. 5-6, 741-754. MR 2106239 (2005k:57018)
  • [KN] A. D. King and P. E. Newstead, On the cohomology ring of the moduli space of rank 2 vector bundles on a curve, Topology 37 (1998) 407-418. MR 1489212 (99a:14019)
  • [Ki] F. C. Kirwan, The cohomology rings of moduli spaces of bundles over Riemann surfaces, J. Amer. Math. Soc. 5 (1992) 853-906. MR 1145826 (93g:14016)
  • [La1] S. Lawton, Generators, Relations and Symmetries in Pairs of 3x3 Unimodular Matrices, J. Algebra 313 (2007), no. 2, 782-801. MR 2329569 (2008k:16039)
  • [La2] S. Lawton, Poisson geometry of $ SL(3,\mathbb{C})$-character varieties relative to a surface with boundary, Trans. Amer. Math. Soc. 361 (2009), 2397-2429. MR 2471924 (2009k:53224)
  • [La3] S. Lawton, Minimal Affine Coordinates for $ SL(3,\mathbb{C})$ Character Varieties of Free Groups, J. Algebra 320 (2008), no. 10, 3773-3810. MR 2457722 (2009j:20060)
  • [La4] S. Lawton, Obtaining the One-Holed Torus from Pants: Duality in an SL(3,C)-Character Variety, Pacific J. Math. 242 (2009), no. 1, 131-142. MR 2525506 (2010g:53164)
  • [La5] S. Lawton, Algebraic Independence in SL(3,C) Character Varieties of Free Groups, aXiv:0807.0798
  • [LP] S. Lawton and E. Peterson, Spin networks and SL(2,C)-Character varieties, Eur. Math. Soc. Zurich, 2009. MR 2516745
  • [Le1] T. Q. Le, Varieties of representations and their subvarieties of cohomology jumps for knot groups. (Russian) Mat. Sb. 184 (1993), no. 2, 57-82; translation in Russian Acad. Sci. Sb. Math. 78 (1994), no. 1, 187-209. MR 1214944 (94a:57016)
  • [Le2] T. Q. Le, The colored Jones polynomial and the $ A$-polynomial of knots, Adv. Math. 207 (2006), no. 2, 782-804. MR 2271986 (2007k:57021)
  • [Li] J. Li, The space of surface group representations, Manuscripta Math. 78 (1993) 223-243. MR 1206154 (94c:58022)
  • [LR1] D. D. Long and A. W. Reid, Commensurability and the character variety, Math. Res. Lett. 6 (1999), no. 5-6, 581-591. MR 1739217 (2000m:57017)
  • [LR2] D. D. Long and A. W. Reid, Integral points on character varieties, Math. Ann. 325 (2003), no. 2, 299-321. MR 1962051 (2004c:57028)
  • [LM] A. Lubotzky and A. Magid, Varieties of representations of finitely generated groups, Memoirs of the AMS, 336 (1985). MR 818915 (87c:20021)
  • [Lu] D. Luna, Slices étale, Bull. Soc. Math. Fr., Suppl. Mèm. 33 (1973), 81-105. MR 0342523 (49:7269)
  • [Me] E. Meinrenken, Witten's formulas for intersection pairings on moduli spaces of flat $ G$-bundles, Adv. in Math. 197 (2005), 140-197. MR 2166180 (2006d:53108)
  • [MW] E. Meinrenken and C. Woodward, Moduli spaces of flat connections on $ 2$-manifolds, cobordism, and Witten's volume formulas.
  • [MS] J. W. Morgan and P. B. Shalen, Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. (2) 120 (1984), 401-476. MR 769158 (86f:57011)
  • [Mo] K. Motegi, Haken manifolds and representations of their fundamental groups in $ \textup {SL}(2,C)$, Topology Appl. 29 (1988), no. 3, 207-212. MR 953952 (89h:57010)
  • [MFK] D. Mumford, J. Fogarty and F. Kirwan, Geometric Invariant Theory, Springer-Verlag 1994. MR 1304906 (95m:14012)
  • [Na] K. Nakamoto, Representation varieties and character varieties, Publ. Res. Inst. Math. Sci. 36 (2000), no. 2, 159-189. MR 1753200 (2001f:14026)
  • [NS] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. Math. 82 (1965), 540-567. MR 0184252 (32:1725)
  • [Ne] P. E. Newstead, Introduction to Moduli Problems and Orbit Spaces, Tata Institute Lecture Notes, Springer 1978. MR 546290 (81k:14002)
  • [Ol] A. G. Oliveira, Representations of surface groups in the projective general linear group, Int. J. of Math., in press.
  • [PX] D. Pickrell and E. Xia, Ergodicity of mapping class group actions on representation varieties. I. Closed surfaces, Comment. Math. Helv. 77 (2002), no. 2, 339-362. MR 1915045 (2003i:22025)
  • [PBK] V.P. Platonov and V. V. Benyash-Krivets, Character rings of representations of finitely generated groups, (Russian) Translated in Proc. Steklov Inst. Math. 1991, no. 4, 203-213, Galois theory, rings, algebraic groups and their applications (Russian) Trudy Mat. Inst. Steklov.183 (1990), 169-178, 227. MR 1092029 (91m:20064)
  • [PV] V. L. Popov and E. B. Vinberg, Invariant Theory, in Encyclopaedia of Mathematical Sciences, Algebraic Geometry IV, A. N. Parshin, I. R. Shafarevich, eds., Springer 1994. MR 1309681 (95g:14002)
  • [Po] J. Porti, Torsion de Reidemeister pour les Variétés Hyperboliques, Memoirs of A.M.S. 612, vol. 128, (1997). MR 1396960 (98g:57034)
  • [PS1] J. H. Przytycki and A. S. Sikora, On Skein Algebra of a Group, in ``Knot theory,'' Banach Center Publications 42, Warsaw, 1998, 297-306. MR 1634463 (99e:57019)
  • [PS2] J. H. Przytycki and A. S. Sikora, On Skein Algebras and $ Sl_{2}(\mathbb{C})$-Character Varieties, Topology 39 (2000), no. 1, 115-148. MR 1710996 (2000g:57026)
  • [Rac] S. Racanière, Kirwan Map and Moduli Space of Flat Connections, Mathematical Research Letters 11 (2004), 419-433. MR 2092897 (2005h:53150)
  • [Rag] M. S. Raghunatan, Discrete subgroups of Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68, Springer-Verlag, 1968. MR 0507234 (58:22394a)
  • [Ra] A. S. Rapinchuk, On SS-rigid groups and A. Weil's criterion for local rigidity. I, Manuscripta Math. 97 (1998), no. 4, 529-543. MR 1660132 (99m:20019)
  • [RBK] A. S. Rapinchuk and V. V. Benyash-Krivets, Geometric theory of representations for fundamental groups of compact oriented surfaces, Dokl. Akad. Nauk 329 (1993), no. 2, 140-143; translation in Russian Acad. Sci. Dokl. Math. 47 (1993), no. 2, 211-215. MR 1228102 (94i:20070)
  • [RBC] A. S. Rapinchuk, V. V. Benash-Krivetz and V. I. Chernousov, Representation Varieties of the fundamental groups of compact orientable surfaces, Israel J. of Math. 93 1996 29-71. MR 1380633 (98a:57002)
  • [RT] N. Yu. Reshetikhin and V. G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), no. 1, 1-26. MR 1036112 (91c:57016)
  • [Ri1] R. W. Richardson, Commuting varieties of semi-simple Lie algebras and algebraic groups, Compositio Math. 38 (1979), no. 3, 311-327. MR 535074 (80c:17009)
  • [Ri2] R. W. Richardson, Conjugacy classes of $ n$-tuples in Lie algebras and algebraic groups, Duke Math. J. 57 (1988), no. 1, 1-35. MR 952224 (89h:20061)
  • [Ril1] R. Riley, Parabolic representations of knot groups, I, Proc. London Math. Soc. 3(24) (1972), 217-242. MR 0300267 (45:9313)
  • [Ril2] R. Riley, Nonabelian representations of $ 2$-bridge knot groups, Quart. J. Math. Oxford 2 35 (1984), 191-208. MR 745421 (85i:20043)
  • [Sa] K. Saito, Character variety of representations of a finitely generated group in $ \textup {SL}\sb 2$, Topology and Teichmüller spaces (Katinkulta, 1995), 253-264, World Sci. Publ., 1996. MR 1659663 (99k:20011)
  • [Se] J.-P. Serre, Complète Réductibilité. Séminaire Bourbaki, no 932, $ 56$ème année, 2003-2004. MR 2167207 (2006d:20084)
  • [Shf] I. R. Shafarevich, Basic Algebraic Geometry I, Springer, 1995. MR 0447223 (56:5538)
  • [Shl] P. Shalen, Representations of 3-manifold groups, in Handbook of Geometric Topology, R. Daverman and R. Sher, eds. North-Holland, Amsterdam, 2002, 955-1044. MR 1886685 (2003d:57002)
  • [Si1] A. S. Sikora, $ SL_n$-character varieties as spaces of graphs, Trans. A.M.S. 353 (2001), no. 7, 2773-2804. MR 1828473 (2003b:57004)
  • [Si2] A. S. Sikora, Skein theory for $ \textup {SU}(n)$-quantum invariants, Algebr. Geom. Topol. 5 (2005), 865-897. MR 2171796 (2006j:57033)
  • [Si3] A. S. Sikora, Quantizations of character varieties and quantum knot invariants, Algebr. Geom. Topol. to appear, arXiv:0807.0943
  • [Si4] A. S. Sikora, Algebraic description of character varieties, preprint.
  • [Si5] A. S. Sikora, Character varieties of abelian groups, in preparation.
  • [Sim1] C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79 (1994), 47-129. MR 1307297 (96e:14012)
  • [Sim2] C. Simpson, Moduli of representations of the fundamental group of a smooth projective variety. II. Inst. Hautes Études Sci. Publ. Math. 80 (1994), 5-79 (1995). MR 1320603 (96e:14013)
  • [Sn] J. Sniatycki, Geometric Quantization and Quantum Mechanics, Springer, 1980. MR 554085 (82b:81001)
  • [Sp] E. Spanier, Singular homology and cohomology with local coefficients and duality for manifolds, Pacific J. Math. 160 (1993), no. 1, 165-200. MR 1227511 (94h:55009)
  • [SS] J. Souto and P. Storm, Dynamics of the mapping class group action on the variety of $ \textup {PSL}_{2}\mathbb{C}$ characters, Geom. Topol. 10 (2006), 715-736. MR 2240903 (2007k:57035)
  • [St] R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 49-80. MR 0180554 (31:4788)
  • [Th1] M. Thaddeus, Conformal field theory and the cohomology of the moduli space of stable bundles, J. Differential Geom. 35 (1992) 131-149. MR 1152228 (93g:14017)
  • [Th2] M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), 317-353. MR 1273268 (95e:14006)
  • [Th3] M. Thaddeus, A perfect Morse function on the moduli space of flat connections, Topology 39 (2000), no. 4, 773-787. MR 1760428 (2001h:53123)
  • [Ti] S. Tillmann, Character varieties of mutative 3-manifolds, Algebr. Geom. Topol. 4 (2004), 133-149. MR 2059186 (2005c:57016)
  • [Th] W. P. Thurston, Three-dimensional geometry and topology, Volume 1, Edited by Silvio Levy, Princeton Univeersity Press, 1997. MR 1435975 (97m:57016)
  • [Wa] W. Waterhouse, Introduction to Affine Group Schemes, Graduate Texts in Mathematics, Springer, 1997. MR 547117 (82e:14003)
  • [Wb] C. A. Weibel, Introduction to Homological Algebra, Cambridge Univ. Press, 1994. MR 1269324 (95f:18001)
  • [Wei] A. Weil, Remarks on cohomology of groups, Ann. of Math. 80 (1964) (1) 149-157. MR 0169956 (30:199)
  • [We1] J. Weitsman, Quantization via real polarization of the moduli space of flat connections and Chern-Simons gauge theory in genus $ 1,$ Commun. Math. Phys. 137 (1991), 175-190. MR 1099261 (92f:58071)
  • [We2] J. Weitsman, Real polarization of the moduli space of flat connections on a Riemann surface, Commun. Math. Phys. 145 (1992), 425-433. MR 1162354 (93e:58077)
  • [We3] J. Weitsman, Geometry of the intersection ring of the moduli space of flat connections and the conjectures of Newstead and Witten, Topology 37(1) (1998) 115-132. MR 1480881 (99m:57030)
  • [We] R. A. Wentworth, The action of the mapping class group on representation varieties, preprint.
  • [Wi1] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989), no. 3, 351-399. MR 990772 (90h:57009)
  • [Wi2] E. Witten, On quantum gauge theories in two dimensions, Commun. Math. Phys. 141 (1991) 153-209. MR 1133264 (93i:58164)
  • [Wi3] E. Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992) 303-368. MR 1185834 (93m:58017)
  • [Wh] A. Whittemore, On special linear characters of free groups of rank $ n\geq 4,$ Proc. of A.M.S. 40 (1973), no. 2, 383-388. MR 0322064 (48:428)
  • [Wi] A. Wienhard, The action of the mapping class group on maximal representations, Geom. Dedicata 120 (2006), 179-191. MR 2252900 (2008g:20112)
  • [Wol] S. A. Wolpert, The Weil-Petersson metric geometry, in Handbook of Teichmueller theory, Vol. II, IRMA Lectures, European Math. Soc., 2009. MR 2497791 (2010i:32012)
  • [Wo] N. M. J. Woodhouse, Geometric Quantization, 2nd ed., Clarendon Press, Oxford, 1992. MR 1183739 (94a:58082)
  • [Za] D. Zagier, On the cohomology of moduli spaces of rank two vector bundles over curves, in The moduli space of curves (Texel Island, 1994), 533-563, Progr. Math., 129, Birkhäuser, 1995. MR 1363070 (97g:14010)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 14D20, 14L24, 57M27

Retrieve articles in all journals with MSC (2010): 14D20, 14L24, 57M27


Additional Information

Adam S. Sikora
Affiliation: Department of Mathematics, 244 Math. Bldg., University at Buffalo, SUNY, Buffalo, New York 14260
Email: asikora@buffalo.edu

DOI: https://doi.org/10.1090/S0002-9947-2012-05448-1
Keywords: Representation variety, character variety, irreducible representation, completely reducible representation, Goldman symplectic form, $3$-manifold, Lagrangian submanifold
Received by editor(s): January 31, 2010
Received by editor(s) in revised form: May 25, 2010, and August 23, 2010
Published electronically: May 15, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society