Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Family independence for topological and measurable dynamics


Authors: Wen Huang, Hanfeng Li and Xiangdong Ye
Journal: Trans. Amer. Math. Soc. 364 (2012), 5209-5242
MSC (2010): Primary 37B40, 37A35, 37B10, 37A05
DOI: https://doi.org/10.1090/S0002-9947-2012-05493-6
Published electronically: May 2, 2012
MathSciNet review: 2931327
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: For a family $ \mathcal {F}$ (a collection of subsets of $ \mathbb{Z}_+$), the notion of $ \mathcal {F}$-independence is defined both for topological dynamics (t.d.s.) and measurable dynamics (m.d.s.). It is shown that there is no non-trivial {syndetic}-independent m.d.s.; an m.d.s. is {positive-density}-independent if and only if it has completely positive entropy; and an m.d.s. is weakly mixing if and only if it is {IP}-independent. For a t.d.s. it is proved that there is no non-trivial minimal {syndetic}-independent system; a t.d.s. is weakly mixing if and only if it is {IP}-independent.

Moreover, a non-trivial proximal topological K system is constructed, and a topological proof of the fact that minimal topological K implies strong mixing is presented.


References [Enhancements On Off] (What's this?)

  • 1. E. Akin. Recurrence in Topological Dynamical Systems. Furstenberg Families and Ellis Actions. The University Series in Mathematics. Plenum Press, New York, 1997. MR 1467479 (2000c:37014)
  • 2. V. Bergelson. Sets of recurrence of $ \mathbb{Z}^m$-actions and properties of sets of differences in $ \mathbb{Z}^m$. J. London Math. Soc. (2) 31 (1985), 295-304. MR 809951 (87a:28025)
  • 3. V. Bergelson. Minimal idempotents and ergodic Ramsey theory. In: Topics in Dynamics and Ergodic Theory, pp. 8-39, London Math. Soc. Lecture Note Ser., 310, Cambridge Univ. Press, Cambridge, 2003. MR 2052273 (2006b:37022)
  • 4. F. Blanchard. Fully positive topological entropy and topological mixing. In: Symbolic Dynamics and its Applications (New Haven, CT, 1991), pp. 95-105, Contemp. Math. 135, Amer. Math. Soc., Providence, RI, 1992. MR 1185082 (93k:58134)
  • 5. F. Blanchard. A disjointness theorem involving topological entropy. Bull. Math. Soc. France 121 (1993), 465-478. MR 1254749 (95e:54050)
  • 6. F. Blanchard, E. Glasner, and B. Host. A variation on the variational principle and applications to entropy pairs. Ergod. Theor. Dyn. Syst. 17 (1997), 29-43. MR 1440766 (98k:54073)
  • 7. F. Blanchard, B. Host, A. Maass, S. Martinez, and D. J. Rudolph. Entropy pairs for a measure. Ergod. Theor. Dyn. Syst. 15 (1995), 621-632. MR 1346392 (96m:28024)
  • 8. F. Blanchard and Y. Lacroix. Zero entropy factors of topological flows. Proc. Amer. Math. Soc. 119 (1993), 985-992. MR 1155593 (93m:54066)
  • 9. A. Blokh and A. Fieldsteel. Sets that force recurrence. Proc. Amer. Math. Soc. 130 (2002), 3571-3578. MR 1920036 (2003e:37017)
  • 10. I. P. Cornfeld, S. V. Fomin, and Ya. G. Sinaĭ. Ergodic Theory. Translated from the Russian by A. B. Sosinskiĭ. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245. Springer-Verlag, New York, 1982. MR 832433 (87f:28019)
  • 11. P. Dong, S. Shao, and X. Ye. Product recurrent properties, disjointness and weak disjointness. Israel J. of Math. 188 (2012), 463-507.
  • 12. H. Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation. Math. Systems Theory 1 (1967), 1-49. MR 0213508 (35:4369)
  • 13. H. Furstenberg. Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton, N.J., 1981. MR 603625 (82j:28010)
  • 14. E. Glasner. Ergodic Theory via Joinings. Mathematical Surveys and Monographs, 101. Amer. Math. Soc., Providence, RI, 2003. MR 1958753 (2004c:37011)
  • 15. E. Glasner. Classifying dynamical systems by their recurrence properties. Topol. Methods Nonlinear Anal. 24 (2004), 21-40. MR 2111980 (2006b:37024)
  • 16. E. Glasner. On tame dynamical systems. Colloq. Math. 105 (2006), no. 2, 283-295. MR 2237913 (2007d:37005)
  • 17. E. Glasner. The structure of tame minimal dynamical systems. Ergod. Theor. Dyn. Syst. 27 (2007), no. 6, 1819-1837. MR 2371597 (2008m:37015)
  • 18. E. Glasner and B. Weiss. Strictly ergodic, uniform positive entropy models. Bull. Soc. Math. France 122 (1994), 399-412. MR 1294463 (95k:28035)
  • 19. E. Glasner and B. Weiss. Topological entropy of extensions. In: Ergodic Theory and its Connections with Harmonic Analysis (Alexandria, 1993), pp. 299-307, London Math. Soc. Lecture Note Ser., 205, Cambridge Univ. Press, Cambridge, 1995. MR 1325706 (96b:54064)
  • 20. E. Glasner and B. Weiss. Quasi-factors of zero entropy systems. J. Amer. Math. Soc. 8 (1995), 665-686. MR 1270579 (95i:54048)
  • 21. E. Glasner and B. Weiss. On the interplay between measurable and topological dynamics. In: Handbook of Dynamical Systems. Vol. 1B, pp. 597-648, Elsevier B. V., Amsterdam, 2006. MR 2186250 (2006i:37005)
  • 22. E. Glasner and X. Ye. Local entropy theory. Ergod. Theor. Dyn. Syst. 29 (2009), 321-356. MR 2486773 (2010k:37023)
  • 23. W. H. Gottschalk and G. A. Hedlund. Topological Dynamics. Amer. Math. Soc. Colloquium Publications, Vol. 36. Amer. Math. Soc., Providence, R.I., 1955. MR 0074810 (17:650e)
  • 24. P. R. Halmos. Lectures on Ergodic Theory. Chelsea Publishing Co., New York, 1960. MR 0111817 (22:2677)
  • 25. N. Hindman. Finite sums from sequences within cells of a partition of $ N$. J. Combinatorial Theory Ser. A 17 (1974), 1-11. MR 0349574 (50:2067)
  • 26. W. Huang. Tame systems and scrambled pairs under an abelian group action. Ergod. Theor. Dyn. Syst. 26 (2006), no. 5, 1549-1567. MR 2266373 (2007j:37012)
  • 27. W. Huang, H. Li, and X. Ye. Localization and dynamical Ramsey property. In preparation.
  • 28. W. Huang, K. K. Park, and X. Ye. Topological disjointness from entropy zero systems. Bull. Soc. Math. France 135 (2007), 259-282. MR 2430193 (2009g:54084)
  • 29. W. Huang, S. Shao, and X. Ye. Mixing via sequence entropy. In: Algebraic and Topological Dynamics, pp. 101-122, Contemp. Math., 385, Amer. Math. Soc., Providence, RI, 2005. MR 2180232 (2006h:37008)
  • 30. W. Huang and X. Ye. Topological complexity, return times and weak disjointness. Ergod. Theor. Dyn. Syst. 24 (2004), 825-846. MR 2062921 (2005c:37011)
  • 31. W. Huang and X. Ye. Dynamical systems disjoint from any minimal system. Trans. Amer. Math. Soc. 357 (2005), 669-694. MR 2095626 (2005g:37012)
  • 32. W. Huang and X. Ye. A local variational relation and applications. Israel J. Math. 151 (2006), 237-279. MR 2214126 (2006k:37033)
  • 33. M. G. Karpovsky and V. D. Milman. Coordinate density of sets of vectors. Discrete Math. 24 (1978), 177-184. MR 522926 (80m:05004)
  • 34. A. S. Kechris. Classical Descriptive Set Theory. Graduate Texts in Mathematics, 156. Springer-Verlag, New York, 1995. MR 1321597 (96e:03057)
  • 35. D. Kerr and H. Li. Independence in topological and $ C^*$-dynamics. Math. Ann. 338 (2007), 869-926. MR 2317754 (2009a:46126)
  • 36. D. Kerr and H. Li. Combinatorial independence in measurable dynamics. J. Funct. Anal. 256 (2009), 1341-1386. MR 2490222 (2010j:37009)
  • 37. R. Kuang and X. Ye. The return times set and mixing for measure preserving transformations. Discrete Contin. Dyn. Syst. 18 (2007), 817-827. MR 2318270 (2008d:37006)
  • 38. R. Kuang and X. Ye. Mixing via families for measure preserving transformations. Colloq. Math. 110 (2008), 151-165. MR 2353902 (2008k:37015)
  • 39. W. Parry. Topics in Ergodic Theory. Reprint of the 1981 original. Cambridge Tracts in Mathematics, 75. Cambridge University Press, Cambridge, 2004. MR 2140546 (2005m:37003)
  • 40. K. E. Petersen. Disjointness and weak mixing of minimal sets. Proc. Amer. Math. Soc. 24 (1970), 278-280. MR 0250283 (40:3522)
  • 41. K. E. Petersen. A topologically strongly mixing symbolic minimal set. Trans. Amer. Math. Soc. 148 (1970), 603-612. MR 0259884 (41:4513)
  • 42. V. A. Rohlin. Lectures on the entropy theory of measure-preserving transformations with invariant measure. Uspehi Mat. Nauk 22 (1967), 3-56. Translated in Russian Math. Surveys (22) (1967), 1-52. MR 0217258 (36:349)
  • 43. V. A. Rohlin and Ja. G. Sinaĭ. The structure and properties of invariant measurable partitions. (Russian) Dokl. Akad. Nauk SSSR 141 (1961), 1038-1041. MR 0152629 (27:2604)
  • 44. A. Rosenthal. Strictly ergodic models for noninvertible transformations. Israel J. Math. 64 (1988), 57-72. MR 981749 (90a:28026)
  • 45. H. P. Rosenthal. A characterization of Banach spaces containing $ \ell ^1$. Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413. MR 0358307 (50:10773)
  • 46. H. P. Rosenthal. Some recent discoveries in the isomorphic theory of Banach spaces. Bull. Amer. Math. Soc. 84 (1978), 803-831. MR 499730 (80d:46023)
  • 47. K. Roth. Sur quelques ensembles d'entiers. C. R. Acad. Sci. Paris 234 (1952), 388-390. MR 0046374 (13:724d)
  • 48. N. Sauer. On the density of families of sets. J. Combinatorial Theory Ser. A 13 (1972), 145-147. MR 0307902 (46:7017)
  • 49. S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary languages. Pacific J. Math. 41 (1972), 247-261. MR 0307903 (46:7018)
  • 50. J. de Vries. Elements of Topological Dynamics. Mathematics and its Applications, 257. Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1249063 (94m:54098)
  • 51. P. Walters. An Introduction to Ergodic Theory. Graduate Texts in Mathematics, 79. Springer-Verlag, New York-Berlin, 1982. MR 648108 (84e:28017)
  • 52. B. Weiss. A survey of generic dynamics. In: Descriptive Set Theory and Dynamical Systems (Marseille-Luminy, 1996), pp. 273-291, London Math. Soc. Lecture Note Ser., 277, Cambridge Univ. Press, Cambridge, 2000. MR 1774430 (2001j:37008)
  • 53. X. Ye and R. Zhang. On sensitive sets in topological dynamics. Nonlinearity 21 (2008), 1601-1620. MR 2425336 (2009j:37017)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 37B40, 37A35, 37B10, 37A05

Retrieve articles in all journals with MSC (2010): 37B40, 37A35, 37B10, 37A05


Additional Information

Wen Huang
Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Email: wenh@mail.ustc.edu.cn

Hanfeng Li
Affiliation: Department of Mathematics, Chongqing University, Chongqing 401331, People’s Republic of China – and – Department of Mathematics, SUNY at Buffalo, Buffalo, New York 14260-2900
Email: hfli@math.buffalo.edu

Xiangdong Ye
Affiliation: Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
Email: yexd@ustc.edu.cn

DOI: https://doi.org/10.1090/S0002-9947-2012-05493-6
Keywords: Independence, weak mixing, minimal, K
Received by editor(s): December 14, 2009
Received by editor(s) in revised form: August 25, 2010
Published electronically: May 2, 2012
Additional Notes: The first author was partially supported by the NNSF of China (10911120388), the Fok Ying Tung Education Foundation, FANEDD (Grant 200520) and the Fundamental Research Funds for the Central Universities
The second author was partially supported by NSF grant DMS-0701414
The first and third authors were partially supported by grants from NNSF of China (10531010, 11071231) and 973 Project (2006CB805903)
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society