Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Commutator estimates in $ W^*$-factors


Authors: A. F. Ber and F. A. Sukochev
Journal: Trans. Amer. Math. Soc. 364 (2012), 5571-5587
MSC (2010): Primary 46L57, 46L51, 46L52
DOI: https://doi.org/10.1090/S0002-9947-2012-05568-1
Published electronically: May 21, 2012
MathSciNet review: 2931339
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathcal {M}$ be a $ W^*$-factor and let $ S\left ( \mathcal {M} \right ) $ be the space of all measurable operators affiliated with $ \mathcal {M}$. It is shown that for any self-adjoint element $ a\in S(\mathcal {M})$ there exists a scalar $ \lambda _0\in \mathbb{R}$, such that for all $ \varepsilon > 0$, there exists a unitary element $ u_\varepsilon $ from $ \mathcal {M}$, satisfying $ \vert[a,u_\varepsilon ]\vert \geq (1-\varepsilon )\vert a-\lambda _0\mathbf {1}\vert$. A corollary of this result is that for any derivation $ \delta $ on $ \mathcal {M}$ with the range in an ideal $ I\subseteq \mathcal {M}$, the derivation $ \delta $ is inner, that is, $ \delta (\cdot )=\delta _a(\cdot )=[a,\cdot ]$, and $ a\in I$. Similar results are also obtained for inner derivations on $ S(\mathcal {M})$.


References [Enhancements On Off] (What's this?)

  • 1. A. F. Ber, B. de Pagter and F.A. Sukochev, Some remarks on derivations in algebras of measurable operators, Mat. Zametki 87 (2010) No. 4, 502-513 (Russian). English translation: Math. Notes, 87 (2010) No. 4, 475-484. MR 2762738
  • 2. V.I. Chilin and F.A. Sukochev, Weak convergence in non-commutative symmetric spaces, J. Operator Theory 31 (1994), 35-65. MR 1316983 (96e:46085)
  • 3. A.F. Ber, B. de Pagter and F.A. Sukochev, Derivations in algebras of operator-valued functions, J. Operator Theory 66 (2011), no. 2, 261-300. MR 2844466
  • 4. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, deuxième édition, Gauthier - Villars, Paris, 1969. MR 0352996 (50:5482)
  • 5. P.G. Dodds, T.K. Dodds and B. de Pagter, Non-commutative Banach function spaces, Math. Z. 201 (1989), 583-597. MR 1004176 (90j:46054)
  • 6. P.G. Dodds, T.K. Dodds and B. de Pagter, Fully symmetric operator spaces, Integral Equations Operator Theory 15 (1992), No. 6, 942-972. MR 1188788 (94j:46062)
  • 7. H. Halpern, Essential central range and selfadjoint commutators in properly infinite von Neumann algebras, Trans. Amer. Math. Soc. 228 (1977), 117-146. MR 0430802 (55:3807)
  • 8. B. E. Johnson and S.K. Parrott, Operators commuting with a von Neumann algebra modulo the set of compact operators, J. Funct. Anal. 11 (1972), 39-61. MR 0341119 (49:5869)
  • 9. R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras II, Academic Press, Orlando, 1986. MR 859186 (88d:46106)
  • 10. N. Kalton and F. Sukochev, Symmetric norms and spaces of operators, J. Reine Angew. Math. 621 (2008), 81-121. MR 2431251 (2009i:46118)
  • 11. V. Kaftal and G. Weiss, Compact derivations relative to semifinite von Neumann algebras, J. Funct. Anal. 62 (1985), no. 2, 202-220. MR 791847 (86j:46065)
  • 12. E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15 (1974) 103-116. MR 0355628 (50:8102)
  • 13. S. Popa and F. Radulescu, Derivations of von Neumann algebras into the compact ideal space of a semifinite algebra, Duke Math. J. 57 (1988), no. 2, 485-518. MR 962517 (90a:46165)
  • 14. S. Sakai, $ C^*$-Algebras and $ W^*$-Algebras, Springer-Verlag, New York-Heidelberg-Berlin, 1971. MR 0442701 (56:1082)
  • 15. I.E. Segal, A non-commutative extension of abstract integration, Ann. of Math. (2) 57 (1953) 401-457. MR 0054864 (14:991f)
  • 16. F. Sukochev and V. Chilin, Symmetric spaces over semifinite von Neumann algebras, Dokl. Akad. Nauk SSSR 313 (1990), no. 4, 811-815 (Russian). English translation: Soviet Math. Dokl. 42 (1992) 97-101. MR 1080637 (92a:46075)
  • 17. M. Takesaki, Theory of operator algebras I, Springer-Verlag, New York-Heidelberg-Berlin, 1979. MR 548728 (81e:46038)
  • 18. M. Takesaki, Theory of Operator Algebras II, Springer-Verlag, Berlin-Heidelberg-New York, 2003. MR 1943006 (2004g:46079)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 46L57, 46L51, 46L52

Retrieve articles in all journals with MSC (2010): 46L57, 46L51, 46L52


Additional Information

A. F. Ber
Affiliation: Department of Mathematics, Tashkent State University, Uzbekistan
Email: ber@ucd.uz

F. A. Sukochev
Affiliation: School of Mathematics and Statistics, University of New South Wales, Sydney, NSW 2052, Australia
Email: f.sukochev@unsw.edu.au

DOI: https://doi.org/10.1090/S0002-9947-2012-05568-1
Keywords: Derivations in von Neumann algebras, measurable operators, ideals of compact operators
Received by editor(s): November 18, 2010
Received by editor(s) in revised form: February 15, 2011
Published electronically: May 21, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society