Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

   
 

 

Hochschild (co)homology of the second kind I


Authors: Alexander Polishchuk and Leonid Positselski
Journal: Trans. Amer. Math. Soc. 364 (2012), 5311-5368
MSC (2010): Primary 16E40; Secondary 18G10, 18G15, 18E30, 13D99
Published electronically: May 30, 2012
MathSciNet review: 2931331
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We define and study the Hochschild (co)homology of the second kind (known also as the Borel-Moore Hochschild homology and the compactly supported Hochschild cohomology) for curved DG-categories. An isomorphism between the Hochschild (co)homology of the second kind of a CDG-category $ B$ and the same of the DG-category $ C$ of right CDG-modules over $ B$, projective and finitely generated as graded $ B$-modules, is constructed.

Sufficient conditions for an isomorphism of the two kinds of Hochschild (co)homology of a DG-category are formulated in terms of the two kinds of derived categories of DG-modules over it. In particular, a kind of ``resolution of the diagonal'' condition for the diagonal CDG-bimodule $ B$ over a CDG-category $ B$ guarantees an isomorphism of the two kinds of Hochschild (co)homology of the corresponding DG-category $ C$. Several classes of examples are discussed. In particular, we show that the two kinds of Hochschild (co)homology are isomorphic for the DG-category of matrix factorizations of a regular function on a smooth affine variety over a perfect field provided that the function has no other critical values but zero.


References [Enhancements On Off] (What's this?)

  • 1. A. Caldararu, J. Tu. Curved A-infinity algebras and Landau-Ginzburg models. Electronic preprint arXiv:1007.2679 [math.KT], 42 pp.
  • 2. T. Dyckerhoff. Compact generators in categories of matrix factorizations. Electronic preprint arXiv:0904.4713 [math.AG], 43 pp.
  • 3. Ezra Getzler and John D. S. Jones, 𝐴_{∞}-algebras and the cyclic bar complex, Illinois J. Math. 34 (1990), no. 2, 256–283. MR 1046565
  • 4. A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967), 361 (French). MR 0238860
  • 5. Dale Husemoller, John C. Moore, and James Stasheff, Differential homological algebra and homogeneous spaces, J. Pure Appl. Algebra 5 (1974), 113–185. MR 0365571
  • 6. Bernhard Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63–102. MR 1258406
  • 7. Bernhard Keller, Wendy Lowen, and Pedro Nicolás, On the (non)vanishing of some “derived” categories of curved dg algebras, J. Pure Appl. Algebra 214 (2010), no. 7, 1271–1284. MR 2587002, 10.1016/j.jpaa.2009.10.011
  • 8. K. Lin, D. Pomerleano. Global matrix factorizations. Electronic preprint arXiv:1101.5847 [math.AG], 15 pp.
  • 9. Amnon Neeman, The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Amer. Math. Soc. 9 (1996), no. 1, 205–236. MR 1308405, 10.1090/S0894-0347-96-00174-9
  • 10. D. O. Orlov, Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Tr. Mat. Inst. Steklova 246 (2004), no. Algebr. Geom. Metody, Svyazi i Prilozh., 240–262 (Russian, with Russian summary); English transl., Proc. Steklov Inst. Math. 3 (246) (2004), 227–248. MR 2101296
  • 11. Dmitri Orlov, Formal completions and idempotent completions of triangulated categories of singularities, Adv. Math. 226 (2011), no. 1, 206–217. MR 2735755, 10.1016/j.aim.2010.06.016
  • 12. A. Polishchuk, A. Vaintrob. Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations. Electronic preprint arXiv:1002.2116 [math.AG], 45 pp.
  • 13. L. E. Positsel′skiĭ, Nonhomogeneous quadratic duality and curvature, Funktsional. Anal. i Prilozhen. 27 (1993), no. 3, 57–66, 96 (Russian, with Russian summary); English transl., Funct. Anal. Appl. 27 (1993), no. 3, 197–204. MR 1250981, 10.1007/BF01087537
  • 14. Leonid Positselski, Homological algebra of semimodules and semicontramodules, Instytut Matematyczny Polskiej Akademii Nauk. Monografie Matematyczne (New Series) [Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], vol. 70, Birkhäuser/Springer Basel AG, Basel, 2010. Semi-infinite homological algebra of associative algebraic structures; Appendix C in collaboration with Dmitriy Rumynin; Appendix D in collaboration with Sergey Arkhipov. MR 2723021
  • 15. L. Positselski. Two kinds of derived categories, Koszul duality, and comodule-contramodule correspondence. Memoirs Amer. Math. Soc. 212, #996, 2011, v+133 pp.arXiv:0905.2621 [math.CT]
  • 16. L. Positselski. Coherent analogues of matrix factorizations and relative singularity categories. Electronic preprint arXiv:1102.0261 [math.CT], 16 pp.
  • 17. Leonid Positselski and Alexander Vishik, Koszul duality and Galois cohomology, Math. Res. Lett. 2 (1995), no. 6, 771–781. MR 1362968, 10.4310/MRL.1995.v2.n6.a8
  • 18. E. Segal. The closed state space of affine Landau-Ginzburg B-models. Electronic preprint arXiv:0904.1339 [math.AG], 30 pp.
  • 19. Albert Schwarz, Noncommutative supergeometry, duality and deformations, Nuclear Phys. B 650 (2003), no. 3, 475–496. MR 1952770, 10.1016/S0550-3213(02)01088-X
  • 20. Goncalo Tabuada, Une structure de catégorie de modèles de Quillen sur la catégorie des dg-catégories, C. R. Math. Acad. Sci. Paris 340 (2005), no. 1, 15–19 (French, with English and French summaries). MR 2112034, 10.1016/j.crma.2004.11.007
  • 21. Bertrand Toën, The homotopy theory of 𝑑𝑔-categories and derived Morita theory, Invent. Math. 167 (2007), no. 3, 615–667. MR 2276263, 10.1007/s00222-006-0025-y
  • 22. J. Tu. Matrix factorizations via Koszul duality. Electronic preprint arXiv:1009.4151 [math.AG], 53 pp.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 16E40, 18G10, 18G15, 18E30, 13D99

Retrieve articles in all journals with MSC (2010): 16E40, 18G10, 18G15, 18E30, 13D99


Additional Information

Alexander Polishchuk
Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email: apolish@uoregon.edu

Leonid Positselski
Affiliation: Department of Mathematics, National Research University “Higher School of Economics”, Moscow 117312, Russia – and – Sector of Algebra and Number Theory, Institute for Information Transmission Problems, Moscow 127994, Russia
Email: posic@mccme.ru

DOI: http://dx.doi.org/10.1090/S0002-9947-2012-05667-4
Received by editor(s): October 15, 2010
Published electronically: May 30, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.