Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Cyclic operad formality for compactified moduli spaces of genus zero surfaces

Authors: Jeffrey Giansiracusa and Paolo Salvatore
Journal: Trans. Amer. Math. Soc. 364 (2012), 5881-5911
MSC (2010): Primary 18D50; Secondary 55P48, 14H15, 81Q30, 81T45
Published electronically: May 21, 2012
MathSciNet review: 2946936
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The framed little 2-discs operad is homotopy equivalent to the Kimura-Stasheff-Voronov cyclic operad of moduli spaces of genus zero stable curves with tangent rays at the marked points and nodes. We show that this cyclic operad is formal, meaning that its chains and its homology (the Batalin-Vilkovisky operad) are quasi-isomorphic cyclic operads. To prove this we introduce a new complex of graphs in which the differential is a combination of edge deletion and contraction, and we show that this complex resolves BV as a cyclic operad.

References [Enhancements On Off] (What's this?)

  • 1. V. I. Arnold, The cohomology ring of the colored braid group. Mat. Zametki 5 (1969), 227-231. MR 0242196 (39:3529)
  • 2. R. Budney, The operad of framed discs is cyclic. J. Pure Appl. Algebra 212 (2008), no. 1, 193-196. MR 2355044 (2008k:55022)
  • 3. I. Gálvez-Carrillo, A. Tonks, and B. Vallette, Homotopy Batalin-Vilkovisky algebras. To appear in Journal of Noncommutative Geometry. arXiv:0907.2246.
  • 4. E. Getzler and J. Jones, Operads, homotopy algebra and iterated integrals for double loop spaces. arXiv:hep-th/9403055.
  • 5. E. Getzler, Batalin-Vilkovisky algebras and two-dimensional topological field theories. Comm. Math. Phys. 159 (1994), no. 2, 265-285. MR 1256989 (95h:81099)
  • 6. E. Getzler and M. M. Kapranov, Cyclic operads and cyclic homology. Geometry, topology, & physics, 167-201, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995. MR 1358617 (96m:19011)
  • 7. J. Giansiracusa and P. Salvatore, Formality of the framed little 2-discs and semidirect products. To appear in Proceedings of ``Homotopy Theory of Function Spaces and Related Topics,'' Oberwolfach, April 5-11, 2009.
  • 8. J. Giansiracusa, The framed little 2-discs operad and diffeomorphisms of handlebodies. J. Topol. 4 (2011), no. 4, 919-941. MR 2860346
  • 9. F. Guillén Santos, V. Navarro, P. Pascual, and A. Roig, Moduli spaces and formal operads. Duke Math. J. 129 (2005), no. 2, 291-335. MR 2165544 (2006e:14033)
  • 10. S. Halperin and J. Stasheff, Obstructions to homotopy equivalences. Adv. in Math. 32 (1979) n.3, 233-279. MR 539532 (80j:55016)
  • 11. R. Hardt, P. Lambrechts, V. Turchin and I. Volic, Real homotopy theory of semi-algebraic sets. arXiv:0806.0476
  • 12. W. J. Harvey, Boundary structure of the modular group. Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978), pp. 245-251, Ann. of Math. Stud., 97, Princeton Univ. Press, Princeton, N.J., 1981. MR 624817 (83d:32022)
  • 13. S. Keel, Intersection theory of moduli space of stable $ n$-pointed curves of genus zero. Trans. Amer. Math. Soc. 330 (1992), no. 2, 545-574. MR 1034665 (92f:14003)
  • 14. T. Kimura, J. Stasheff, and A. Voronov, On operad structures of moduli spaces and string theory. Comm. Math. Phys. 171, 1-25 (1995). MR 1341693 (96k:14019)
  • 15. M. Kontsevich, Operads and motives in deformation quantization. Lett. Math. Phys. 48 (1999) 35-72. MR 1718044 (2000j:53119)
  • 16. M. Kontsevich, Deformation Quantization of Poisson Manifolds. Lett. Math. Phys. 66 (2003) 157-216. MR 2062626 (2005i:53122)
  • 17. P. Lambrechts and I. Volic. Formality of the little $ N$-disks operad. arXiv:0808.0457
  • 18. P. Lambrechts and V. Turchin, Homotopy graph-complex for configuration and knot spaces. Trans. Amer. Math. Soc. 361 (2009), no. 1, 207-222. MR 2439404 (2009e:55016)
  • 19. P. Salvatore, Configuration spaces with summable labels. Cohomological methods in homotopy theory 375-395, Progr. Math., 196, Birkhäuser, Basel, 2001. MR 1851264 (2002f:55039)
  • 20. P. Salvatore and N. Wahl, Framed discs operads and Batalin-Vilkovisky algebras, Q. J. Math. 54 (2003), 213-231. MR 1989873 (2004e:55013)
  • 21. P. Severa, Formality of the chain operad of framed little disks. Lett. Math. Phys. 93 (2010), 29-35. MR 2661521
  • 22. P. Severa and T. Willwacher, Equivalence of formalities of the little discs operad. arXiv:0905.1789
  • 23. D. Sinha, Manifold-theoretic compactifications of configuration spaces. Selecta Math. (N.S.) 10 (2004), no. 3, 391-428. MR 2099074 (2005h:55015)
  • 24. D. Tamarkin, Formality of chain operad of little discs. Lett. Math. Phys. 66 (2003), no. 1-2, 65-72. MR 2064592 (2005j:18010)
  • 25. D. Tamarkin, Another proof of M. Kontsevich formality theorem. arXiv:math/9803025

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 18D50, 55P48, 14H15, 81Q30, 81T45

Retrieve articles in all journals with MSC (2010): 18D50, 55P48, 14H15, 81Q30, 81T45

Additional Information

Jeffrey Giansiracusa
Affiliation: Department of Mathematics, Swansea University, Singleton Park, Swansea, SA2 8PP, United Kingdom

Paolo Salvatore
Affiliation: Dipartimento di Matematica, Universitá di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italy

Keywords: Cyclic operad, framed little discs, moduli of curves, operad formality, graph complex
Received by editor(s): September 10, 2010
Received by editor(s) in revised form: January 25, 2011
Published electronically: May 21, 2012
Article copyright: © Copyright 2012 American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.

American Mathematical Society