Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Universal bounds for eigenvalues of a buckling problem II


Authors: Qing-Ming Cheng and Hongcang Yang
Journal: Trans. Amer. Math. Soc. 364 (2012), 6139-6158
MSC (2010): Primary 35P15, 53C42
DOI: https://doi.org/10.1090/S0002-9947-2012-05662-5
Published electronically: April 18, 2012
MathSciNet review: 2946945
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we investigate universal estimates for eigenvalues of a buckling problem. For a bounded domain in a Euclidean space, we give a positive contribution for obtaining a sharp universal inequality for eigenvalues of the buckling problem. For a domain in the unit sphere, we give an important improvement on the results of Wang and Xia.


References [Enhancements On Off] (What's this?)

  • 1. S. Agmon, On kernels, eigenvalues and eigenfunctions of operators related to elliptic problems, Comm. Pure Appl. Math. 18 (1965), 627-663. MR 0198287 (33:6446)
  • 2. M. S. Ashbaugh, Isoperimetric and universal inequalities for eigenvalues, in Spectral theory and geometry (Edinburgh, 1998), E. B. Davies and Yu Safarov, eds., London Math. Soc. Lecture Notes, vol. 273, Cambridge Univ. Press, Cambridge, 1999, pp. 95-139. MR 1736867 (2001a:35131)
  • 3. M. S. Ashbaugh, On universal inequalities for the low eigenvalues of the buckling problem. Partial differential equations and inverse problems, 13-31, Contemp. Math., 362, Amer. Math. Soc., Providence, RI, 2004. MR 2091488 (2006f:35198)
  • 4. M. S. Ashbaugh and L. Hermi, A unified approach to universal inequalities for eigenvalues of elliptic operators, Pacific J. Math. 217 (2004), 201-219. MR 2109931 (2005k:35305)
  • 5. D. Chen and Q.-M. Cheng, Extrinsic estimates for eigenvalues of the Laplace operator, J. Math. Soc. Japan 60 (2008), 325-339. MR 2421979 (2010b:35323)
  • 6. Q.-M. Cheng, T. Ichikawa and S. Mametsuka, Estimates for eigenvalues of a clamped plate problem on Riemannian manifolds, J. Math. Soc. Japan, 62 (2010), 673-686. MR 2662857 (2011e:58039)
  • 7. Q.-M. Cheng and H. C. Yang, Estimates on Eigenvalues of Laplacian, Math. Ann., 331 (2005), 445-460. MR 2115463 (2005i:58038)
  • 8. Q.-M. Cheng and H. C. Yang, Universal bounds for eigenvalues of a buckling problem, Commn. Math. Phys., 262 (2006), 663-675. MR 2202307 (2007f:35056)
  • 9. Q.-M. Cheng and H. C. Yang, Bounds on eigenvalues of Dirichlet Laplacian, Math. Ann., 337 (2007), 159-175. MR 2262780 (2007k:35064)
  • 10. Q.-M. Cheng and H. C. Yang, Estimates for eigenvalues on Riemannian manifolds, J. Diff. Eqns., 247 (2009), 2270-2281. MR 2561278 (2010j:58066)
  • 11. Q.-M. Cheng and H. C. Yang, Universal inequalities for eigenvalues of a clamped plate problem on a hyperbolic space, Proc. Amer. Math. Soc., 139 (2011), 461-471. MR 2736329
  • 12. A. El Soufi, E. M. Harrell II and S. Ilias, Universal inequalities for the eigenvalues of Laplace and Schrödinger operators on submanifolds, Trans. Amer. Math. Soc., 361 (2009), 2337-2350. MR 2471921 (2010e:58032)
  • 13. E. M. Harrell II, Commutators, eigenvalue gaps and mean curvature in the theory of Schrödinger operators, Comm. Part. Diff. Eqns., 32 (2007), 401-413. MR 2304154 (2008i:35041)
  • 14. G. N. Hile and R. Z. Yeh, Inequalities for eigenvalues of the biharmonic operator, Pacific J. Math. 112 (1984), 115-133. MR 739143 (85k:35170)
  • 15. H. A. Levine and M. H. Protter, Unrestricted lower bounds for eigenvalues for classes of elliptic equations and systems of equations with applications to problems in elasticity, Math. Methods Appl. Sci. 7 (1985), no. 2, 210-222. MR 797333 (87d:35101)
  • 16. P. Li and S. T. Yau, On the Schrödinger equations and the eigenvalue problem, Comm. Math. Phys. 88 (1983), 309-318. MR 701919 (84k:58225)
  • 17. L. E. Payne, G. Pólya and H. F. Weinberger, Sur le quotient de deux fréquences propres consécutives, Comptes Rendus Acad. Sci. Paris, 241 (1955), 917-919. MR 0073046 (17:372d)
  • 18. L. E. Payne, G. Pólya and H. F. Weinberger, On the ratio of consecutive eigenvalues, J. Math. and Phys. 35 (1956), 289-298. MR 0084696 (18:905c)
  • 19. A. Pleijel, On the eigenvalues and eigenfunctions of elastic plates, Comm. Pure Appl. Math., 3 (1950), 1-10. MR 0037459 (12:265a)
  • 20. Q. Wang and C. Xia, Universal inequalities for eigenvalues of the buckling problem on spherical domains, Commn. Math. and Phys. 270 (2007), 759-775. MR 2276464 (2007m:35180)
  • 21. Q. Wang and C. Xia, Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds, J. Funct. Anal., 245 (2007), 334-352. MR 2311628 (2008e:58033)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2010): 35P15, 53C42

Retrieve articles in all journals with MSC (2010): 35P15, 53C42


Additional Information

Qing-Ming Cheng
Affiliation: Department of Mathematics, Graduate School of Science and Engineering, Saga University, Saga 840-8502, Japan
Address at time of publication: Department of Applied Mathematics, Faculty of Sciences, Fukuoka University, Fukuoka 814-0180, Japan
Email: cheng@fukuoka-u.ac.jp

Hongcang Yang
Affiliation: Academy of Mathematics and Systematical Sciences, Chinese Academy of Science, Beijing 100080, People’s Republic of China
Email: yanghc2@netease.com

DOI: https://doi.org/10.1090/S0002-9947-2012-05662-5
Keywords: Universal estimates for eigenvalues, a biharmonic operator and a buckling problem
Received by editor(s): March 3, 2011
Received by editor(s) in revised form: July 7, 2011
Published electronically: April 18, 2012
Additional Notes: The first author’s research was partially supported by a Grant-in-Aid for Scientific Research from JSPS
The second author’s research was partially supported by SF of CAS
Article copyright: © Copyright 2012 American Mathematical Society

American Mathematical Society