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DISCRETE FLAT SURFACES AND LINEAR WEINGARTEN

SURFACES IN HYPERBOLIC 3-SPACE

T. HOFFMANN, W. ROSSMAN, T. SASAKI, AND M. YOSHIDA

Abstract. We define discrete flat surfaces in hyperbolic 3-space H3 from the

perspective of discrete integrable systems and prove properties that justify the
definition. We show how these surfaces correspond to previously defined dis-
crete constant mean curvature 1 surfaces in H3, and we also describe discrete
focal surfaces (discrete caustics) that can be used to define singularities on
discrete flat surfaces. Along the way, we also examine discrete linear Wein-
garten surfaces of Bryant type in H3, and consider an example of a discrete
flat surface related to the Airy equation that exhibits swallowtail singularities
and a Stokes phenomenon.
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1. Introduction

The classical Weierstrass representation for minimal surfaces in Euclidean 3-
space R

3 gives a local conformal parametrization for any minimal surface. It in-
volves choosing two holomorphic functions (or perhaps meromorphic functions when
considering the surfaces more globally) on a Riemann surface. If one restricts to
isothermic parametrizations, that is, conformal parametrizations that are also cur-
vature line coordinate systems, then the representation reduces to the choice of just
one holomorphic function. Since every minimal surface has local isothermic coor-
dinates (away from umbilics), this reduction does not involve any loss of generality
beyond avoiding umbilic points.

Once one restricts to isothermic parametrizations, it becomes possible to give a
definition for discrete analogs of minimal surfaces [7]. These analogs are “discrete
isothermic” meshes (a definition of this is given later in this paper). They are
comprised of planar quadrilaterals, which in particular have concircular vertices.

By a transformation called the Lawson correspondence or T -transformation or
Calapso transformation [15], one can produce all constant mean curvature (CMC)
1 surfaces in hyperbolic 3-space H

3 from minimal surfaces in R3. There is a cor-
responding holomorphic representation for those surfaces as well, first given by
Bryant [11]. Correspondingly, without loss of generality beyond avoiding umbilics,
one can restrict to isothermic coordinates in this case also, and one has a discrete
analog of CMC 1 surfaces in H3, first found by Hertrich-Jeromin [14].

In the case of smooth surfaces there is also a holomorphic representation for flat
(i.e. intrinsic curvature zero) surfaces in H

3 [12] and this also ties in to the above-
mentioned Bryant representation, as there are deformations from CMC 1 surfaces
in H3 to flat surfaces via a family of linear Weingarten surfaces in H3 [13]. These
do not include all linear Weingarten surfaces, but rather a certain special subclass
called linear Weingarten surfaces of Bryant type ([13], [21]), so named because they
have Bryant-type representations.

Thus it is natural to wonder if flat surfaces also have a discrete analog, and we
will see here that they do. Once this discrete analog is found, a new question about
“singularities on discrete flat surfaces” naturally presents itself, in this way: Unlike
the smooth isothermic minimal surfaces in R3 and CMC 1 surfaces in H3, smooth
flat fronts have certain types of singularities, such as cuspidal edges and swallowtails
(in fact, indirectly, this is what the naming “fronts” – rather than “surfaces” –
indicate). The means for recognizing where the singularities are on smooth flat
fronts are clear, and one can make classifications of those surfaces’ most generic
types of singularities just from looking at the choices of holomorphic functions used
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in their representation [18]. However, in the case of discrete flat surfaces, it is not
a priori clear where the singularities are, nor even what such a notion would mean.
Since one does not have first and second fundamental forms at one’s disposal in
the discrete case, one must find an alternate way of defining singularities. We aim
towards this by defining and using a discrete analog of caustics, also called focal
surfaces, for smooth flat fronts. For a smooth flat front, the caustic is the surface
comprised of all the singular points on all parallel surfaces of that flat front. (The
parallel surfaces are also flat.) Thus the singular set of the flat front can be retrieved
by taking its intersection with its caustic. In the case of a smooth flat front, the
caustic is again a flat surface, but this will not quite be the case for discrete flat
surfaces.

We will also present a number of examples of these discrete flat surfaces. In
addition to the rather simple examples of discrete cylinders and discrete surfaces of
revolution, we will also discuss a discrete flat surface based on the Airy equation.
This example exhibits swallowtail singularities and a Stokes phenomenon, similar
to that of the analogous surface in the smooth case, as shown by two of the authors
in [28]. This last example hints at existence of a robust collection of discrete flat
surfaces with interesting geometric properties yet to be explored.

Thus, the purpose of this paper is to:

(1) provide a definition for discrete flat surfaces and discrete linear Weingarten
surfaces of Bryant type in hyperbolic 3-space H

3;
(2) give properties of these surfaces that justify our choice of definitions (in

particular, as smooth flat fronts have extrinsic curvature 1, we identify
notions of discrete extrinsic curvature of discrete flat surfaces which do
indeed attain the value 1);

(3) show that these surfaces have concircular quadrilaterals;
(4) study examples of these surfaces, and in particular look at swallowtail sin-

gularities and global properties of an example related to the Airy equation;
(5) give a definition of discrete caustics for discrete flat surfaces;
(6) show that the caustics also have concircular quadrilaterals and that they

provide a means for identifying a notion of singularities on discrete flat
surfaces.

In Section 2 we describe smooth and discrete minimal surfaces in Euclidean 3-space
R

3, to help motivate later definitions, and we also give the definition of a discrete
holomorphic function, which will be essential to everything that follows. In Section
3 we describe smooth CMC 1 surfaces, and flat surfaces and linear Weingarten
surfaces of Bryant type in H3, again as motivational material for the definitions
of the corresponding discrete surfaces in Section 4. We prove in Section 4 that
discrete flat surfaces and linear Weingarten surfaces of Bryant type have concircular
quadrilaterals. Also, Section 4 provides a natural representation for discrete flat
surfaces which gives the mapping of the surfaces as products of 2 by 2 matrices
times their conjugate transposes, and we show that this representation applies to
the case of discrete CMC 1 surfaces as well. The definition for discrete CMC 1
surfaces is already known [14], but the representation here for those surfaces is
new. In Section 5, we look at a specific discrete example whose smooth analog is
equivalent to solutions of the Airy equation, and we look at the asymptotic behavior
of that surface, which exhibits swallowtail singularities and a Stokes phenomenon.
In Section 6, we look at normal lines to discrete flat surfaces. With this we can do
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several things. For example, we look at parallel surfaces (which are also discrete
flat) and show that the area of corresponding quadrilaterals of the normal map
equals the area of the quadrilaterals of the surface itself, as should be expected,
since in some sense the extrinsic curvature of the surface is identically equal to
1 (note that the analogous statement is true for smooth surfaces with extrinsic
curvature 1, infinitesimally). Then, using distances from the surface’s vertices to
the intersection points of the normal lines, we consider a discrete analog of the
extrinsic curvature and see that it is 1 in the discrete case as well. Furthermore,
those intersections give us a means to define discrete caustics, and, as mentioned
above, we use those caustics to study the nature of “singularities” on discrete flat
surfaces, in the final Section 7.

2. Smooth and discrete minimal surfaces in R3

A useful choice of coordinates for a surface is isothermic coordinates. Not all
surfaces have such coordinates, but CMC surfaces in space forms such as R3 and H3

do have them, away from umbilic points. Isothermic coordinates will be of central
importance in this paper.

Another useful tool in the study of surfaces in space forms is the Hopf differential,
which is defined as Q = 〈fzz, N〉dz2, where the surface f is a map from points z
in a portion of the complex plane C, 〈·, ·〉 is the bilinear extension of the metric
for the ambient space form to complex vectors, and N is the unit normal to the
surface. When the coordinate z is conformal and the surface is CMC, then Q will
be holomorphic in z. Umbilic points of the surface occur precisely at the zeros of
the Hopf differential.

2.1. The Weierstrass representation for smooth minimal surfaces. Locally,
away from umbilics, we can always take a smooth minimal immersion f = f(x, y)
into R3 to have isothermic coordinates (x, y) in a domain of R2. Let N denote the
unit normal vector to f . Then, setting z = x + iy, the Hopf differential becomes
Q = rdz2 for some real constant r, and rescaling the coordinate z, we may assume
r = 1.

Let g be the stereographic projection of the Gauss map N to the complex plane,
and set g′ = dg/dz. As we are only concerned with the local behavior of the surface,
and we are allowed to replace the surface with any rigid motion of it, we may ignore
the possibility that g has poles or other singularities, and so the map g : C → C is
holomorphic. Because we avoid umbilic points of f , we also know that g′ is never
zero. Thus the Weierstrass representation is (with

√
−1 regarded as lying in the

complex plane C)

f = Re

∫ z

z0

(2g, 1 − g2,
√
−1(1 + g2))ω , ω =

Q

dg
=

dz

g′
.

Associating (1, 0, 0), (0, 1, 0) and (0, 0, 1) with the quaternions i, j and k, respec-
tively, we have

(2.1) fx = (i− gj)j
1

gx
(i− gj) , fy = (i− gj)j

−1

gy
(i− gj) .

We have converted to a formulation using quaternions here, because this type of
formulation has been used to define discrete minimal surfaces in R3 and discrete
CMC 1 surfaces in H3, and we wish to make comparisons to those formulations.
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Note that by restricting to isothermic coordinates, we can then determine mini-
mal surfaces by choosing just one holomorphic function g.

2.2. Discrete holomorphic functions. To define discrete minimal surfaces, we
use discrete holomorphic functions g = gm,n : D → C, where D is the square
integer lattice Z2, or a subdomain of it. Discrete holomorphic functions are defined
as follows: defining the cross ratio of g to be

crm,n=(gm+1,n−gm,n)(gm+1,n+1−gm+1,n)−1(gm,n+1−gm+1,n+1)(gm,n−gm,n+1)
−1 ,

we say that g is discrete holomorphic if there exists a discrete mapping α to R such
that

(2.2) crm,n =
α(m,n)(m+1,n)

α(m,n)(m,n+1)
< 0 ,

with α(m,n)(m+1,n) = α(m,n+1)(m+1,n+1) and α(m,n)(m,n+1) = α(m+1,n)(m+1,n+1) for
all quadrilaterals (squares with edge length 1 and vertices in D). See [8]. We call
the discrete map α a cross ratio factorizing function for g.

Note that α is defined on edges of D, not vertices. Note also that α is symmetric,
that is, α(m,n,)(m+1,n) = α(m+1,n)(m,n) and α(m,n,)(m,n+1) = α(m,n+1)(m,n).

There is a freedom of a single real factor in the choice of these α(m,n)(m+1,n)

and α(m,n)(m,n+1), since we could replace all of them with λα(m,n)(m+1,n) and
λα(m,n)(m,n+1) for any non-zero real constant λ, and all relevant properties would
still hold. Throughout this paper we use λ to denote that free factor.

In the above definition of the cross ratio, we have a product of four terms. Since
gm,n ∈ C, these terms all commute, and so we could have written this cross ratio
simply as a product of two fractions. However, when we later consider the cross
ratio for quaternionic-valued objects or matrix-valued objects, commutativity no
longer holds and the order of the product in the cross ratio becomes vital. So, for
later reference, we have chosen to write the cross ratio in the somewhat cumbersome
way above.

The definition above for discrete holomorphic functions is in the “broad” sense.
The definition in the “narrow” sense would be that crm,n is identically −1 on D (see
[7], [8]). Furthermore, note that, unlike the case of smooth holomorphic functions,
the discrete derivative or discrete integral of a discrete holomorphic function is
generally not another discrete holomorphic function.

Let us exhibit some examples of discrete holomorphic functions:

(1) Let D = Z
2 = {(m,n) |m,n ∈ Z}, and set gm,n = c(m+in) for c a complex

constant.
(2) Let D = Z2, and set gm,n = ec(m+in) for c a real or pure imaginary constant.

One could also take the function ec1m+ic2n for choices of real constants c1
and c2 so that the cross ratio is identically −1, giving a discrete holomorphic
function in the narrow sense.

(3) In Section 5 we will describe a discrete flat surface based on a discrete
version of the power function g = zγ (γ ∈ R), which we define here. This
function is discrete holomorphic in the narrow sense. It is defined by the
recursion

(2.3)

γ·gm,n=2m
(gm+1,n − gm,n)(gm,n − gm−1,n)

gm+1,n − gm−1,n
+2n

(gm,n+1 − gm,n)(gm,n − gm,n−1)

gm,n+1 − gm,n−1
.
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We start with D = {(m,n) |m,n ≥ 0}. For γ ∈ (0, 2), the initial conditions
should be

g0,0 = 0 , g1,0 = 1 , g0,1 = iγ .

We can then use (2.3) to propagate along the positive axes {gm,0} and
{g0,n} with m > 1 and n > 1, respectively. We can then compute general
gm,n (for both m > 0 and n > 0) by using that the cross ratio is always −1.
The gm,n will then automatically satisfy the recursion relation (2.3). This
definition of the discrete power function can be found in Bobenko [3]. (It is
also found in a recently published textbook [10].) Agafonov [1] showed that
these discrete power functions are embedded in wedges (see Figure 1), and
are Schramm circle packings (see [31]). Note that, for m ∈ Z and m ≥ 1,

(2.4) g2m,0 =
−m

(
γ
2

)
m(

−γ
2

)
m+1

, g2m+1,0 =
−
(
γ
2

)
m+1(

−γ
2

)
m+1

, g0,n = iγgn,0 ,

where (a)m = a(a + 1)...(a + m − 1) denotes the Pochhammer symbol,
and a closed expression for general gm,n is still unknown. We explore this
difference equation (2.3) in more detail in Appendix 8 at the end of this
paper.

Figure 1. Domain (left) and image (right) for the discrete power
function z4/3.

2.3. Discrete minimal surfaces. The representation (2.1) for smooth minimal
surfaces above suggests that the definition for discrete minimal surfaces is (see [14])

(2.5) fq − fp = (i− gpj)j
αpq

gq − gp
(i− gqj) ,

where g : D → C is a discrete holomorphic function with cross ratio factorizing
function α, and p and q are either (m,n) and (m+ 1, n), or (m,n) and (m,n+ 1).
This defines the surface f up to translations of R3. The freedom of scaling of α
leads to homotheties of f .

As in the smooth case, where we avoided umbilics, and thus g′ was never zero,
we will make the following assumption throughout this paper:

Assumption: gq − gp �= 0 .

Example 2.1. The discrete holomorphic function c(m + in) for c a complex con-
stant will produce a minimal surface called a discrete Enneper surface, and graphics
for this surface can be seen in [7].
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Example 2.2. The discrete holomorphic function ec1m+ic2n for choices of constants
c1 and c2 so that the cross ratio is identically −1 will produce a minimal surface
called a discrete catenoid, and graphics for this surface also can be seen in [7].

3. Smooth CMC 1 surfaces, flat fronts, and linear Weingarten

surfaces in H3

3.1. Smooth CMC 1 surfaces. Similarly to the case of minimal surfaces, we
can describe smooth and discrete CMC 1 surfaces in H

3. Hyperbolic 3-space H
3,

considered in Minkowski 4-space R3,1 = {(x0, x1, x2, x3) |xj ∈ R} (with Minkowski
metric −dx2

0 + dx2
1 + dx2

2 + dx2
3), is

H
3 = {(x0, x1, x2, x3) ∈ R

3,1 |x0 > 0, x2
0 − x2

1 − x2
2 − x2

3 = 1} ≈{
X =

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)∣∣∣∣ tr(X) > 0, detX = 1

}
= {F · F̄T |F ∈ SL2(C)} ,

where the superscript T denotes transposition.
A smooth isothermically-parametrized CMC 1 surface (away from umbilic points),

has the Bryant equation [11]

(3.1) dF = F

(
g −g2

1 −g

)
dz

g′
, F ∈ SL2(C) ,

where g is a holomorphic function with non-zero derivative, and the surface is then

f1 = F · F̄T ∈ H
3 .

3.2. Smooth flat fronts. Starting with a smooth CMC 1 surface f1 with lift F
as above, define

(3.2) E = F ·
(

1 g
0 1

)
.

A flat front is then given by

f0 = E · ĒT ∈ H
3 ,

with unit normal vector field

(3.3) N = E ·
(

1 0
0 −1

)
· ĒT .

We know this surface f0 is flat, because (see [13])

(3.4) dE = E

(
0 g′

(g′)−1 0

)
dz .

This surface with singularities is actually a front, because |g′|2 + |g′|−2 > 0, which
means that the associated Sasakian metric is positive definite. (See Theorem 2.9
in [22].) The notion of fronts is important in the study of smooth flat surfaces
with singularities in H

3. For example, it is a necessary notion for considering the
caustic of a flat surface with singularities. However, it will not play such a direct
role in our considerations on discrete surfaces here. Thus, from here on out, we will
simply consider smooth flat surfaces with singularities, and sometimes will even
just call them flat surfaces even though they might have singularities. When the
front property is actually playing a role, we shall parenthetically refer to the word
“front”. For more information about flat fronts, see [18], [19] and [22].
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Remark 3.1. Because the off-diagonal terms g′ and (g′)−1 in (3.4) are inverse to
each other, the conditions in [18] for having singular points, cuspidal edges and
swallowtails on f0 simplify to this:

(1) singular points occur precisely at points where |g′| = 1;

(2) a singular point is a cuspidal edge if and only if Im( g
′′

g′ ) �= 0 (“Re” and

“Im” denote the real and imaginary parts, respectively);

(3) a singular point is a swallowtail if and only if g′′ �= 0 and Im( g
′′

g′ ) = 0 and

Re(( g
′′

g′ )′) �= 0.

The condition that Im( g
′′

g′ ) = 0 holds at some point along a singular curve |g′| = 1

is equivalent to the curve having a vertical tangent line at that point.

3.3. The hyperbolic Schwarz map and a special coordinate w. For later
reference, we can take a new coordinate w such that

dw =
1

g′
dz ,

which is locally well-defined, and still conformal, although not necessarily isother-
mic. This gives

(3.5) E−1dE =

(
0 q
1 0

)
dw ,

with

q|w(z) = (g′)2 =
dg

dw

∣∣∣∣
w(z)

.

The reason for changing variables from z to w is that equation (3.5) now becomes

(3.6) d2

dw2 u− q(w) · u = 0

with f0 = EĒT the hyperbolic Schwarz map (see [28]), where

(3.7) E =

(
u1

d
dwu1

u2
d
dwu2

)
,

with functions u1, u2 that are linearly independent solutions of equation (3.6)
chosen so that the constant u1

d
dw (u2) − u2

d
dw (u1) will be 1. Equation (3.6) with

q(w) = w is the well-known Airy equation.

Remark 3.2. Using q and w, the conditions in Remark 3.1 become:

(1) Singular points: |q| = 1.
(2) Cuspidal edge points: Im( qw

q3/2
) �= 0.

(3) Swallowtail points: qw �= 0, Im( qw
q3/2

) = 0 and Re(
2qwwq−3q2w

q3 ) �= 0.

3.4. Smooth linear Weingarten surfaces of Bryant type. We will now give
a deformation through linear Weingarten surfaces between the surfaces f1 and f0
described in Sections 3.1 and 3.2. This deformation was first introduced in [13].
There are numerous ways to choose the deformation, and no one way is geometri-
cally more canonical than any other. We will soon come back to this issue (Section
3.5). However, for now we will simply fix one choice for the deformation – the
one that deforms f1 and f0 as given in Sections 3.1 and 3.2 into each other, in
accordance with the notation of previous papers ([18], [19], [20], [22]).
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This particular choice will suffice when we switch to investigating discrete sur-
faces later. In fact, the resulting classes of discrete flat surfaces and discrete linear
Weingarten surfaces of Bryant type, although defined in terms of the deformation,
do not actually depend on the choice of deformation. (We say more about this in
Section 4.4.) Hence the theorems we prove about these surfaces also are indepen-
dent of the choice of deformation.

We shall refer to this choice of deformation as the “first Weingarten family” (of
either f1 or f0), and the procedure that we follow for constructing it is as follows.
Following [13],

• we convert the E in [13], actually notated as “g” there, to (ET )−1,
• then changing the holomorphic function h in [13] to −g for the function g

given here,
• and allowing −ω in [13] to become dz/g′ for the function g here,
• and also changing f and N to (fT )−1 and (NT )−1, respectively,

a linear Weingarten surface of Bryant type in H
3 satisfying (see also [21])

(3.8) 2t(H − 1) + (1 − t)K = 0 ,

where H and K are the mean and intrinsic curvatures, respectively, is

ft = (EL)(EL)
T
.

Here E satisfies (3.4) and

L =

(
β −tgβ
0 β−1

)
, β =

√
1 + tgḡ

1 + t2gḡ
∈ R .

All linear Weingarten surfaces satisfying (3.8) (i.e. of Bryant type) can be con-
structed in this way (see [13]).

When t = 0, we use the frame E = E ·(L|t=0) = F ·
(

1 g
0 1

)
, giving a flat surface

f0, as in Section 3.2. When t = 1, we use the frame F = E ·(L|t=1) = E ·
(

1 −g
0 1

)
,

giving a CMC 1 surface f1, as in Section 3.1. Thus we have a deformation through
linear Weingarten surfaces in H3, from CMC 1 surfaces in H3 to flat surfaces in H3.
(See also [21].)

3.5. Geometric non-uniqueness of the deformation in [13]. We now explain
in more detail why there is non-uniqueness for the choice of deformation through
linear Weingarten surfaces of Bryant type. The deformation between smooth flat
surfaces and smooth CMC 1 surfaces through linear Weingarten surfaces, given in
Section 3.4, is not uniquely determined in any geometric sense, because of ambigu-
ities in the choice of Weierstrass data. We illustrate this with two lemmas, both of
which are easily verified:

Lemma 3.3. Given a smooth isothermically-parametrized CMC 1 surface f1 in H3

with lift F and Weierstrass data g, the transformation

F → F ·B , B =

(
p q
−q̄ p̄

)
∈ SU2
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will not change the resulting surface f1 = F · F̄T = FB ·FB
T
, and will change the

Weierstrass data by

g → ĝ =
p̄g − q

q̄g + p
.

Remark 3.4. By Lemma 3.3, different choices for B do not affect f1. However, when
B is not diagonal, the transformation in the above lemma generally will result in a
different deformation ft through linear Weingarten surfaces for t < 1, and also in a
different flat surface f0.

Lemma 3.5. Given a flat surface f0 with Weierstrass data g′ and lift E as in
equation (3.4), then the transformation

g → g + a ,

followed by the transformation

E → E ·B ,

where B ∈ SU2 is either diagonal or off-diagonal and a is any complex constant,

will not change the resulting surface f0 = E · ĒT = EB · EB
T
.

Remark 3.6. Under the transformations of E and g in Lemma 3.5, f0 is not affected.
However, when B is off-diagonal or a is not zero, these transformations generally
will result in a different deformation ft through linear Weingarten surfaces for t > 0.
In particular, the CMC 1 surface f1 generally will change.

The two lemmas and two remarks above show that the “first Weingarten family”
deformation will change when different Weierstrass data is used, even when the
original surface under consideration does not change.

To demonstrate that other choices actually do give different deformations, we
will also consider a deformation we call the “second Weingarten family”, given by
starting with a flat surface f0 with given lift E, and then using the lift EB for an
off-diagonal B ∈ SU2 instead to make the deformation through linear Weingarten
surfaces of Bryant type. (Any choice of off-diagonal B ∈ SU2 will result in the same
deformation.) Regardless of whether E or EB is used, we have the same surface
f0, but E and EB give opposite orientations for the normal vector to f0, and we
are interested in this particular choice for a second deformation precisely because of
this orientation-reversing property. The frames E and EB give different families of
linear Weingarten surfaces when t > 0. Such different deformations of surfaces can
be seen in Figures 2 (first Weingarten family) and 3 (second Weingarten family),
and also in Figures 5 (first Weingarten family) and 6 (second Weingarten family).

3.6. The deformations with respect to the coordinate w. The first Wein-
garten family is

f
(1)
t = (EL)(EL)T ,

where L is as in Section 3.4 and E solves equation (3.4). In terms of the new
coordinate w given in Section 3.3, since g =

∫
qdw, L takes the form

L =

(
β −tβ ·

∫
qdw

0 β−1

)
, β = β(w) =

√
1 + t|

∫
qdw|2

1 + t2|
∫
qdw|2 .
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A second Weingarten family f
(2)
t can be given by taking

B =

(
0 1
−1 0

)
,

and then
f
(2)
t = EBL̂(EBL̂)T ,

where

L̂ =

(
β̂ −thβ̂

0 β̂−1

)
, β̂ =

√
1 + thh̄

1 + t2hh̄
, h =

∫ −1

g′
dz ,

and E again solves (3.4). Note that there is freedom of choice of additive constant
in the definition of h, and different constants will give different deformations.

In terms of the new coordinate w satisfying dw = 1
g′ dz (and q = (g′)2) given in

Section 3.3, a second Weingarten family f
(2)
t has a particularly nice expression for

its singular set:

Lemma 3.7. The second Weingarten family f
(2)
t taken by choosing h = −w is

singular along the curve

|q|2(1 + t|w|2)4 − (1 − t)2 = 0 .

Note that, in particular, f
(2)
1 could be singular only at points where q = 0.

Proof. Note that

(EB)−1d(EB) = −
(

0 1
q 0

)
dw

and

f
(2)
t =

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
= EB

(
1+t2|w|2
1+t|w|2 −tw̄

−tw 1 + t|w|2

)
B̄T ĒT ,

where the xj are now considered as real-valued functions of w and w̄ (and also of t).

Substituting dxk = ∂xk

∂w dw+ ∂xk

∂w̄ dw̄ into the Minkowski norm dx2
1+dx2

2+dx2
3−dx2

0,
we find that

Adw2 + Ādw̄2 + 2Bdwdw̄ = dx2
1 + dx2

2 + dx2
3 − dx2

0

has discriminant

B2−AĀ = |u1
d
dw (u2)−u2

d
dw (u1)|4

(
|q|2(1 + t|w|2)4 − (1 − t)2

)2
(1+ t|w|2)−4 ≥ 0 ,

where u1 and u2 are as in Section 3.3. Since u1
d
dw (u2) − u2

d
dw (u1) = 1, the proof

is completed. �
3.7. Examples. We now give some examples.

Example 3.8. Take any constant q ∈ C \ {0} in equation (3.5). Then we can take
g =

√
qz = qw, and so both the coordinates z and w will be isothermic if q ∈ R,

and we now assume q is a positive real. Let us use the coordinate w, and then E
as in Section 3.3 can be taken as

E = q−1/4 ·
(

cosh(
√
qw)

√
q sinh(

√
qw)

sinh(
√
qw)

√
q cosh(

√
qw)

)
and we can take F as

F = q−1/4 ·
(

cosh(
√
qw)

√
q sinh(

√
qw) − qw cosh(

√
qw)

sinh(
√
qw)

√
q cosh(

√
qw) − qw sinh(

√
qw)

)
.
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Then f0 = EĒT is a (geodesic) line when |q| = 1, and is a (hyperbolic) cylinder
when |q| �= 1. Also, f1 = FF̄T gives CMC 1 Enneper cousins in H3 ([11], [27]) (see
Figure 2). These f1 and f0 deform to each other via the first Weingarten family.

Now, consider half-lines in the domain (the complex plane C) of the Enneper
cousins f1 emanating from the point w = 0. In all but two directions for these rays,
the corresponding curve on the surface will converge to a single point in the sphere
at infinity ∂H3. This limit point can be different for different directions, and in
particular the limit will be one certain point (resp. one other certain point) for any
ray that makes an angle of less than (resp. more than) π/2 with the positive real
axis in the w-plane. However, in the two special directions for these rays where w
is pure imaginary, the corresponding two curves on the surface converge to infinite
wrappings of circles in ∂H3. These properties are easily checked, because we have
an explicit form for F , as above. Furthermore, the behavior is the same for any

f
(1)
t whenever t > 0, which is also easily checked. This behavior is similar to the

Stokes phenomenon we will see in Example 3.10.
See Figure 2 for the first Weingarten family of f0, and Figure 3 for a second

Weingarten family of f0.

Example 3.9. To make CMC 1 surfaces of revolution f1, the so-called catenoid
cousins ([11], [32]), one can use g = eμz in (3.1), for μ either real or purely imag-
inary. For the corresponding flat surfaces f0, one can obtain the surfaces called
hourglasses (resp. snowmen) by choosing real (resp. imaginary) values for μ ([12],
[22]). Discrete versions of these flat surfaces can be seen in Figure 7, and graphics
of the smooth surfaces look much the same, but are smooth.

Example 3.10. We will now consider the holomorphic function g = zγ = z4/3,

which gives the hyperbolic Schwarz map f0 for the Airy equation d2

dw2 u − wu = 0
as in equation (3.6).

The value γ = 4
3 corresponds to the choice q = w, and so is of particular interest.

We can see this correspondence as follows: We take q to be w. This means we have
w = (g′)2, and so dw = 2g′g′′dz. Then, because dw = (1/(dg/dz))dz, we have
(1/(dg/dz))dz = 2g′g′′dz, and so the original holomorphic function g, as a function
of z, would satisfy

1

2
= g′′(g′)2

and so

g = 3

√
81
128z

4/3 ,

and the scalar factor 3

√
81
128 can be removed by replacing z with an appropriate

constant real multiple of z.
This surface f0 has an umbilic point at w = 0 (so the corresponding caustic will

blow out to infinity at w = 0; see [18], [19], [26]), and it has a “triangle” of singular
points with three cuspidal edge arcs connected by three swallowtail singularities,
and it has 120 degree dihedral symmetry. Similar to the case of the CMC 1 Enneper
cousins, starting at the center point of the surface (w = 0 in the domain of the
mapping) and going in any direction but three (i.e. following a ray out from w = 0
in the domain), the corresponding curve on the surface will converge to a single
point (one of three possible points) in the sphere at infinity ∂H3 (as in Example
3.8, this limit point can be different for different directions). However, in three
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special directions for these rays, the corresponding curves on the surface converge
to infinite wrappings of circles in ∂H3. These special directions are exactly opposite
to the directions of the swallowtail singularities. This is called Stokes phenomenon,
and was explored carefully for this example in [28], [30]. Portions of this f0 can be
seen in Figure 4.

The surfaces f
(2)
t (0 ≤ t < 1) in a second Weingarten family of f0 have the same

property that the singular set is a triangle of three cuspidal edge arcs connected
by three swallowtails. Then, as t tends to 1, the three swallowtails converge to
the origin w = 0, and when t = 1 the CMC 1 surface f1 has a branch point of
order 2 at w = 0. The deformation near the origin can be simulated by the map
Ys : (u, v) �→ (y1, y2, y3) given by

y1 = −s(u2 + v2) + 2uv2 − 2
3u

3 , y2 = 2su + u2 − v2 , y3 = −sv + uv ,

as s = 1 − t tends to zero.
The first and second Weingarten families for f0 can be seen in Figures 5 and 6.
More generally, using q = wn in (3.1) will give the flat surfaces f0 investigated

in [28]. When n is neither −1 nor −2, we have g = cnz
2n+2
n+2 for some cn > 0. When

q = w−1, then g = 2 log z. When q = w−2, we have g = ce−z, and c can take on
any value.

Remark 3.11. It is interesting to note that, in Example 3.10, while the two choices

q = w and q̂ = ŵ−1/2 give different equations d2

dw2 u = wu and d2

dŵ2 û = ŵ−1/2û, the
solutions û to the second equation are essentially just w-derivatives of the solutions
u to the first equation. A computation then shows q and q̂ can produce two flat
surfaces that are parallel surfaces of each other. In terms of the coordinate z, the
corresponding statement is that g = z4/3 and ĝ = ẑ2/3 can produce two flat surfaces
that are parallel to each other, and in fact this also follows from Lemma 3.5 (taking
B to be off-diagonal with off-diagonal entries both i).

4. Discrete CMC 1, flat and linear Weingarten surfaces in H3

4.1. Known definition for discrete CMC 1 surfaces. We now describe how
discrete CMC 1 surfaces in H3 were defined in [14]. For this, we first give a light
cone model for H

3 in Minkowski 5-space R
4,1 that is commonly used in Moebius

geometry, and that was used in [14] in conjunction with quaternions. Let H denote
the 4-dimensional vector space of quaternions with the usual basis 1, i, j and k, and
with the usual notion of quaternionic multiplication. Points (x1, x2, x3, x4, x0) ∈
R

4,1 can then be given by

(4.1) X = x1

(
i 0
0 −i

)
+x2

(
j 0
0 −j

)
+x3

(
k 0
0 −k

)
+x4

(
0 1
−1 0

)
+x0

(
0 1
1 0

)
,

and the R4,1 metric 〈X,X〉 is then given by (I is the identity matrix)

〈X,X〉 · I = −X2 .

Now let us view the collection of such trace-free 2 × 2 matrices with imaginary
quaternions on the diagonal and reals on the off-diagonal as the set of points in
R4,1. We can then define H3 as a 3-dimensional submanifold of the light cone in
this way:

(4.2) H
3 =

{
X ∈ R

4,1

∣∣∣∣X2 = 0, X ·
(
−i 0
0 i

)
+

(
−i 0
0 i

)
·X = 2I

}
.
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SP

NP

t = 0 t = 1/4

t = 3/4 t = 1

t = 1/2

NP NP

NP NP

Figure 2. The first Weingarten family associated with a hyper-
bolic cylinder, in the Poincaré ball model for H3. Here we take
q > 0 constant, so that g′ =

√
q and g = qw. Half of each of the

surfaces is cut away. Note that the surface is a CMC 1 Enneper
cousin when t = 1. See Example 3.8. (Here we have included grid
lines on these smooth surfaces simply to make the graphics more
visible.)

This H3 will have constant sectional curvature −1 when given the induced metric
from R4,1. Furthermore, for each point X in the light cone, there is at most one
value for r ∈ R so that rX lies in H3, so we can alternately view H3 as the
projectivized light cone.

In [14], in order to define discrete CMC 1 surfaces in H3, the discrete version of
the Bryant equation

(4.3) Fq − Fp = Fp

(
gp −gpgq
1 −gq

)
λαpq

gq − gp
, detF ∈ R ,

was used, where g is a discrete holomorphic function with cross ratio factorizing
function αpq, and p and q are adjacent vertices in the domain D ⊂ Z2 of g. Note
that we have assumed gq − gp �= 0 (see Section 2.3). The non-zero real parameter λ
can be chosen freely. The formula for the discrete CMC 1 surface f in H3 was then
obtained, analogous to the formula (2.5) for the case of discrete minimal surfaces,
by setting (here L4 is the 4-dimensional light cone in R4,1)
(4.4)

f1,p = r ·
(
−bā aā
bb̄ −ab̄

)
∈ H

3 ⊂ L
4 ⊂ R

4,1 , where

(
a
b

)
=

(
0 1
j 0

)
Fp

(
i
j

)
,

where r is the appropriate choice of real scalar to place f1,p in H3 as defined in
(4.2). In fact,

r = 2(bāi + ibā)−1 = −2(ab̄i + iab̄)−1 ∈ R .
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SP

NP
NP NP

t = 0 t = 1/4 t = 1/2

t = 3/4 t = 1

NP NP

Figure 3. A second Weingarten family associated with a hyper-
bolic cylinder, in the Poincaré ball model. See Example 3.8.

Figure 4. Images of the smooth flat surface related to the Airy

equation d2

dw2 u − wu = 0, in the Poincaré ball model. The left
figure is the image of the unit disc {|w| ≤ 1}, shown with grid lines
for better visibility. The boundary of this left figure is the cuspidal
edge curve with three swallowtail corners. The middle two figures
are the image of the ring {1.17 ≤ w ≤ 2.34}, shown twice, once
with grid lines and once without. The right figure is the image of
{3.27 ≤ w ≤ 4.09}, this time shown without grid lines because in
this case visibility is better without them. See Example 3.10.

Because the entries of F are complex, not quaternionic, it follows that bā is purely
imaginary quaternionic, so the above matrix f1,p does lie in R

4,1, and thus in L
4

and then also in H3 with an appropriate choice of r. Also, we actually have a
1-parameter family of surfaces, due to the freedom of choice of λ.

The solution F is defined only up to scalar factors. This is essentially because
equation (4.3) is not symmetric in p and q, and can be explained as follows: Consider
a quadrilateral in D with vertices p, q, r and s given counterclockwise about the
quadrilateral, and with p as the lower left vertex. Then Fq = Fp · A with A
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t = 0 (flat) t = 1/2

t = 1 (CMC 1) t = 1 (CMC 1)

Figure 5. The first Weingarten family associated with the Airy
equation, in the Poincaré ball model. See Example 3.10. The
bottom two figures are the same CMC 1 surface, shown once with
grid lines and once without.

determined by equation (4.3). Then Fr = Fq ·B, again by (4.3). Similarly, Fs =
Fp · C and Fr = Fs ·D. Thus we expect AB = CD, and a computation shows that

this is indeed the case. However, we also have Fp equal to Fq · Â, by (4.3) with

the roles of p and q reversed, and it turns out that AÂ = (1 − λαpq)I �= I. Thus,
the solution F to (4.3) is only defined projectively, that is, it is only defined up to
scalar factors.

Nevertheless, because we are scaling by a real factor r in equation (4.4) anyways,
the resulting discrete CMC 1 surface is still well-defined. Thus we have seen the
following lemma.

Lemma 4.1. Although the solution F of equation (4.3) is multi-valued and only
defined up to scalar factors, the discrete CMC 1 surface f1 given in (4.4) is well-
defined.

In fact, the upcoming Theorem 4.2 also implies that the discrete CMC 1 surface
f1 is well-defined.

4.2. New formulation for discrete CMC 1 surfaces. Equivalently to the def-
inition given in [14], there is another way to define fp, which is given in the next
theorem. This new form for fp is convenient, because it is clearly analogous to the
form used in the Bryant representation for smooth CMC 1 surfaces in H3, and it
removes the need for the Moebius-geometric R4,1 light cone model for H3.
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t = 1/2 t = 1 (CMC 1) t = 1 (CMC 1)

t = 0 (flat) t = 1/10

Figure 6. A second Weingarten family associated with the Airy
equation, in the Poincaré ball model. See Example 3.10. The two
lower-right figures are the same CMC 1 surface, shown once with
grid lines and once without. (The upper-left surface here is the
same as the upper-left surface in Figure 5.)

Theorem 4.2. The above description (4.4) for the discrete CMC 1 surface given
by F is equal to the surface given by 1

detF FF̄T , up to a rigid motion of H3.

Proof. The matrices fp in H
3, as described in (4.4), will be of the form

r

(
−(ĀC + B̄D)j + i(AD −BC) CC̄ + DD̄

AĀ + BB̄ j(AC̄ + BD̄) − i(AD −BC)

)
,

where r is a non-zero real scalar and

F =

(
A B
C D

)
.

To have f1,p ∈ H
3, we should take

r =
1

AD −BC
.

This means that the coefficient of the i term in the diagonal entries will be simply
±1. So we can view the surface as lying in the 4-dimensional space R3,1, by simply
removing the matrix term with scalar x1 from equation (4.1).
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Now, the projection into the Poincaré ball model is

(x2, x3, x4, x0) →
(x2, x3, x4)

1 + x0

=
(Re(−ĀC − B̄D), Im(−ĀC − B̄D), 12 (−AĀ−BB̄ + CC̄ + DD̄))

AD −BC + 1
2 (AĀ + BB̄ + CC̄ + DD̄)

.(4.5)

On the other hand, if we look at

1

AD −BC
FF̄T =

1

AD −BC

(
AĀ + BB̄ AC̄ + BD̄
CĀ + DB̄ CC̄ + DD̄

)
=

(
y0 + y3 y1 + iy2
y1 − iy2 y0 − y3

)
,

and then project to the Poincaré ball, we have

(y1, y2, y3)

1 + y0

(4.6) =
(Re(AC̄ + BD̄), Im(AC̄ + BD̄), 1

2 (AĀ + BB̄ − CC̄ −DD̄))

AD −BC + 1
2 (AĀ + BB̄ + CC̄ + DD̄)

.

The quantities (4.5) and (4.6) are the same, up to a rigid motion of H3, proving
the theorem. �

4.3. Discrete flat surfaces. To make discrete flat surfaces in H3, we can now
take

(4.7) Ep = Fp ·
(

1 gp
0 1

)
, detE = detF ∈ R ,

as in (3.2) for the smooth case. We then use the same formula (4.4) as for discrete
CMC 1 surfaces to define the discrete flat surface, but with Fp replaced by Ep. In
light of Theorem 4.2, the following definition is natural:

Definition 4.3. For E given as in (4.7), where F is a solution of equation (4.3),

(4.8) f0 =
1

detE
EĒT

is a discrete flat surface.

Furthermore, in light of the behavior of the normal for smooth flat surfaces in
equation (3.3), it is natural to define the normal at vertices of a discrete flat surface
by

(4.9) Np :=
1

detEp
Ep ·

(
1 0
0 −1

)
· ĒT

p .

A discrete version of equation (3.4) can then be computed, and becomes

(4.10) Eq − Ep = Ep

(
0 gq − gp

λαpq

gq−gp
0

)
,

where λ is an arbitrary parameter in R \ {0}.

Remark 4.4. As in Lemma 4.1 for F , this E is only defined up to scalar factors.
However, the discrete flat surface f0 is still well-defined.
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Remark 4.5. Changing gp to d · gp for d ∈ R+ gives parallel discrete flat surfaces,
and this is seen as follows: gp → d · gp implies

(4.11) Ep → Ed
p := Ep ·

(
1/
√
d 0

0
√
d

)
,

which implies the original surface f0,p = 1
detEp

EpĒ
T
p changes to

(4.12) fd
0,p = cosh(log d) · f0,p − sinh(log d) ·Np .

This surface fd
0 is a parallel surface of f0, and f1

0 is the same as the original surface
f0. It also follows from (4.11) and (4.12) that the geodesic at f0,p in the direction

Np and the geodesic at fd
0,p in the direction Nd

p = 1
detEd

p
Ed

p

(
1 0
0 −1

)
Ed

p

T
are the

same.

We now give one of our main results:

Theorem 4.6. Discrete flat surfaces in H3 have concircular quadrilaterals.

Remark 4.7. Although they have concircular quadrilaterals, discrete flat surfaces
are generally not discrete isothermic. This is expected, since smooth flat surfaces
given as in Section 3.2 are generally not isothermically parametrized as well.

Proof. Let f0 = 1
det(E)EĒT be a discrete flat surface defined on a domain D ⊆ Z2,

formed from a discrete holomorphic function g on D. Let p = (m,n), q = (m+1, n),
r = (m+ 1, n+ 1) and s = (m,n+ 1) be the vertices of one quadrilateral in D, and
let Ep, Eq, Er and Es be the respective values of E at those vertices. We choose
a cross ratio factorizing function for g, and we denote that function’s value on the
edge from p to q, respectively p to s, as αpq, respectively αps. Then

Eq = EpU , U =

(
1 gq − gp

λαpq

gq−gp
1

)
,

Es = EpV , V =

(
1 gs − gp

λαps

gs−gp
1

)
,

Er = EpUV1 = EpV U1 , U1 =

(
1 gr − gs

λαpq

gr−gs
1

)
,

V1 =

(
1 gr − gq

λαps

gr−gq
1

)

(note that we have UV1 = V U1, by the cross ratio identity in equation (2.2)).
Now the cross ratio for the quadrilateral given by the four surface vertices f0,p,

f0,q, f0,r and f0,s is

C = (f0,p − f0,q)(f0,q − f0,r)
−1(f0,r − f0,s)(f0,s − f0,p)

−1 ,

or equivalently

(f0,p − f0,q)(f0,q − f0,r)
−1 = C(f0,p − f0,s)(f0,s − f0,r)

−1 .

(Note that commutativity does not hold for the product of four terms in this C, so
it is vital that the order of the product be given correctly.) To prove the theorem,
it suffices to show that C is a real scalar factor times the identity matrix.
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Note that

f0,p − f0,q =
1

det(Ep)
Ep(I −

1

det(U)
UŪT )ĒT

p

and

f0,q − f0,r =
1

det(Ep)

1

det(U)
EpU(I − 1

det(V1)
V1V̄

T
1 )ŪT ĒT

p ,

so we have

(f0,p − f0,q)(f0,q − f0,r)
−1

= det(U)Ep(I −
1

det(U)
UŪT )(ŪT )−1(I − 1

det(V1)
V1V̄

T
1 )−1U−1E−1

p

and likewise

(f0,p − f0,s)(f0,s − f0,r)
−1

= det(V )Ep(I −
1

det(V )
V V̄ T )(V̄ T )−1(I − 1

det(U1)
U1Ū

T
1 )−1V −1E−1

p .

So one finds that

det(U1)Ep(det(U)(ŪT )−1 − U)(det(V1)V
−1
1 − V̄ T

1 )−1V −1
1 U−1

= det(V1)CEp(det(V )(V̄ T )−1 − V )(det(U1)U
−1
1 − ŪT

1 )−1U−1
1 V −1 .

Because UV1 = V U1, we have

det(U1)

det(V1)
Ep(det(U)(ŪT )−1 − U)(det(V1)V

−1
1 − V̄ T

1 )−1

= CEp(det(V )(V̄ T )−1 − V )(det(U1)U
−1
1 − ŪT

1 )−1 .

The determinants of U and V are real, so for example

det(U)(ŪT )−1 =

(
1

λαpq

ḡp−ḡq

ḡp − ḡq 1

)

and we get

det(U)(ŪT )−1 − U = (|gq − gp|2 + λαpq)

(
0 1

ḡp−ḡq
1

gp−gq
0

)
.

With similar expressions for the other differences we see that

det(U1)

det(V1)

|gq − gp|2 + λαpq

|gr − gq|2 + λαps
Ep

(
0 1

ḡp−ḡq
1

gp−gq
0

)(
0 gq − gr

ḡq − ḡr 0

)

=
|gs − gp|2 + λαps

|gr − gs|2 + λαpq
CEp

(
0 1

ḡp−ḡs
1

gp−gs
0

)(
0 gs − gr

ḡs − ḡr 0

)
.

So the expression for C is

C = μEp

(
ḡq−ḡr
ḡp−ḡq

ḡs−ḡp
ḡr−ḡs

0

0
gq−gr
gp−gq

gs−gp
gr−gs

)
E−1

p = μ · αps

αpq
·
(

1 0
0 1

)

for some real factor μ. This concludes the proof. �
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4.4. Discrete linear Weingarten surfaces of Bryant type. We can now look
at discrete linear Weingarten surfaces in H3, similarly to the approach taken in
Subsection 3.4 for the smooth case. In the discrete case, one takes Ep(t) = Ep ·Lp,
for

Lp =

⎛
⎝
√

1+tgpḡp
1+t2gpḡp

−tg
√

1+tgpḡp
1+t2gpḡp

0
√

1+t2gpḡp
1+tgpḡp

⎞
⎠ .

We can then define the discrete linear Weingarten surface of Bryant type to be

ft,p =
1

detEp(t)
Ep(t)Ep(t)

T
.

Note that even though ft has been defined using one particular choice for the
deformation through linear Weingarten surfaces (and as seen before, this choice is
not canonical), the resulting collection of all discrete linear Weingarten surfaces does
not depend on the choice of deformation. This follows from properties analogous
to those for the smooth case in Section 3.5:

• If gm,n is a discrete holomorphic function defined on a domain D, then
gm,n + a is also discrete holomorphic with the same cross ratios, for any
choice of complex constant a.

• If a cross ratio factorizing function for gm,n is α, then ĝm,n defined by

(4.13) ĝq − ĝp =
−αpq

gq − gp

(where pq represents both horizontal and vertical edges) is also a discrete
holomorphic function that is well-defined on D (i.e. ĝm,n is not multi-valued
once an initial condition is fixed in the above difference equation (4.13)),
again with the same cross ratios as gm,n.

• If equation (4.10) holds, then we also have

(Eq − Ep) ·
(

0 1√
λ

−
√
λ 0

)
= Ep ·

(
0 1√

λ

−
√
λ 0

)
·
(

0 ĝq − ĝp
λαpq

ĝq−ĝp
0

)
,

and so both E and

E ·
(

0 1√
λ

−
√
λ 0

)

will produce discrete flat surfaces in H
3, and these two surfaces are parallel

surfaces of each other (see Remark 4.5). The two resulting linear Wein-
garten families will be different.

• For any constant matrix(
a b
−b̄ ā

)
∈ SU2 ,

the function

g̃m,n =
agm,n + b

−b̄gm,n + ā

is also discrete holomorphic, with the same cross ratios as g.
• If equation (4.3) holds, then we also have

(Fq − Fp) ·
(
ā −b
b̄ a

)
= Fp ·

(
ā −b
b̄ a

)
·
(
g̃p −g̃pg̃q
1 −g̃q

)
λαpq

g̃q − g̃p
,
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and so both F and

F ·
(
ā −b
b̄ a

)
will produce the same discrete CMC 1 surface in H3, but will give different
linear Weingarten families.

Remark 4.8. When taking g (resp. ĝ) to be the discrete power function zγ (resp.
−zγ̂) as in (2.3) and (2.4), equation (4.13) will hold with αpq = 1 on horizontal
edges and αpq = −1 on vertical edges if

γ + γ̂ = 2

(see Lemma 8.1 in Appendix 8). Thus by the third item above, g and ĝ will produce
two discrete flat surfaces that are parallel to each other. We saw this same behavior
in the smooth case as well; see Remark 3.11.

We have the following result, which can be proven similarly to the way Theorem
4.6 was proven.

Theorem 4.9. For any t, the resulting linear Weingarten surface ft has concircular
quadrilaterals.

Remark 4.10. Note again that, as in Remark 4.7, when t is not 1, the surface will
not be discrete isothermic in general.

4.5. Examples. We now give three discrete examples, in parallel with the previous
smooth Examples 3.8, 3.9 and 3.10. The third example is in the next Section 5.

Example 4.11. Here we discretize Example 3.8. We define, for any non-zero
constant q > 0,

gm,n = q · (m + in) ,

and then

(gm+1,n−gm,n)(gm+1,n+1−gm+1,n)−1(gm,n+1−gm+1,n+1)(gm,n−gm,n+1)
−1 = −1 ,

so we can define the cross ratio factorizing function as (where np denotes the n
coordinate of p ∈ D)

αpq = (−1)np+nq .

We take a solution F of equation (4.3). We have

Fm+1,n = Fm,nUm,n , Fm,n+1 = Fm,nVm,n ,

where

Um,n =

(
1 + λ(m + in) −λq(m + in)(1 + m + in)

λq−1 1 − λ(1 + m + in)

)
,

Vm,n =

(
1 + λ(im− n) −iλq(m + in)(i + m + in)

iλq−1 1 − λ(im− n− 1)

)
.

We have the necessary compatibility condition

Vm,nUm,n+1 = Um,nVm+1,n .

Then, using this Fm,n, we can construct the Weingarten family for this holomorphic
function gm,n. There are special isolated values of the scaling λ that give atypical
results, just as in the smooth case in Example 3.8, where |q| = 1 gave the atypi-
cal result of a geodesic line for the resulting flat “surface”. However, usually the
resulting flat surface will be a discrete cylinder.
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Figure 7. Discrete flat surfaces of revolution and their caustics,
shown in the Klein model for H

3. The left surface is called a
“snowman”, and the one on the right is called an “hourglass”.

Example 4.12. As in the smooth case (Example 3.9), we can use discrete holomor-
phic exponential functions gm,n = ec(m+in) for any non-zero constant c ∈ R ∪ (iR)
to construct discrete flat surfaces of revolution. See Figure 7.

Remark 4.13. In Figure 7, we use the Klein model for H3. We sometimes find
the Klein ball model to be more convenient than the Poincaré ball model, because
geodesics in the Klein model are the same as Euclidean straight lines. Since we are
dealing with discrete surfaces with geodesic edges, this can be convenient. This is
particularly useful when looking at the intersection set of two discrete surfaces.

Figure 8. A discrete flat surface in the Klein model constructed
from the discrete holomorphic function z4/3, and thus related to the
Airy equation. The surface is on the left, and the surface together
with its discrete caustic is on the right. Because the discrete version
of zγ is constructed from circle packings, every fourth vertex has
two adjacent horizontal (resp. vertical) edges for which |dg =
gq − gp| is the same. Since |dg| determines the distance to focal
points, we always have three normal geodesics off vertices of the
surface meeting at a single focal point. It follows that Cf consists
of triangles in this case.

5. An example related to the Airy equation, and Stokes phenomenon

The following Example 5.1 is of interest because it has similar properties to the
corresponding surface in the smooth case: the surface in the smooth case has trifold
symmetry and has three swallowtail singularities connected by three cuspidal edges,
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and also has a Stokes phenomenon in its asymptotic behavior [28] (see Example
3.10).

5.1. The discrete flat surface made with the discrete power function z4/3.
We now give an example related to the Airy equation.

Example 5.1. For this discrete example (see Figure 8), we need the discrete version
of g = z4/3, as defined in Section 2.2. Because we have a discrete holomorphic
function z4/3, we are in a position to be able to consider the resulting discrete
flat surface via equations (4.3), (4.7) and (4.8), and also a discrete Airy equation,
analogous to equation (3.5).

Numerical evidence (see Figure 8) suggests similar corresponding swallowtail
singularities for this discrete flat surface, analogous to those for the smooth case in
Example 3.10.

In Figure 9, portions of the hyperbolic Schwarz image (i.e. this discrete flat
surface) related to the Airy equation are shown. The image of the discrete half-line
z > 0 (z ∈ Z) is the roughly horizontal curve in the left-hand part of the figure,
which has a single limit point in the boundary sphere. The image of the discrete
half-line iz < 0 (z ∈ iZ) is the repeatedly looping curve in the central part of the
figure, which has no single limit point in the boundary sphere and instead wraps
around infinitely many times. This behavior is typical for the continuous Airy case
along the Stokes direction, and the corresponding curves on the smooth flat surface
associated with the Airy equation behave in the same way (see Example 3.10).
This provides a numerical confirmation of a Stokes phenomenon for the discrete
Airy function.

We also note that the numerics suggest a behavior similar to that of the smooth
case regarding singularities, as the image looks from a distance as though it has
three cuspidal edge arcs connecting at three swallowtail singularities. Further-
more the discrete caustic of this flat surface has a similar behavior to that of the
corresponding smooth caustic, in that it points sharply outward at its center of
symmetry. (Caustics will be introduced in the next section.)

Figure 9. Asymptotic limit of two curves in the discrete flat sur-
face associated with the Airy equation.
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t = 0 (flat) t = 1/10

t = 1/2 t = 1 (CMC1)

Figure 10. The linear Weingarten family of discrete surfaces for
a discrete flat surface associated with the Airy equation, in the
Poincaré ball model. (The upper-left surface here is the same as
the left-hand surface in Figure 8.)

6. Caustics of discrete flat surfaces

In this and the next section (and in Appendix 9), since we will consider flat
surfaces and their caustics exclusively, we will abbreviate the notation “f0” to “f”.

6.1. Definition of discrete caustics. Let Cf be the collection of focal points,
i.e. the focal surface, also called the caustic, of a smooth flat surface f in H

3 (note
that we should assume f is a flat front, so that the caustic will exist). If Ef is the
lift of f = Ef Ē

T
f (determined from g), then (see [18])

(6.1) ECf
= Ef ·

(√
g′ 0
0 1√

g′

)
· P , P =

1√
2

(
1

√
−1√

−1 1

)
,

is a lift of Cf = ECf
ĒT

Cf
. Although we have just described the caustic in terms of

Weierstrass data, it is independent of the choice of that data. We know that Cf is
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a flat surface (see [18], [19]), because its lift ECf
satisfies the following equation:

(6.2) (ECf
)−1dECf

=

(
0 1 +

√
−1
2

g′′

g′

1 −
√
−1
2

g′′

g′ 0

)
dz .

For the case of a discrete flat surface f in H
3 with discrete lift E, we must first

consider how to define the caustic Cf . We can define the normal Np as in (4.9) at
each vertex fp of f , so we have normal geodesics emanating from each vertex, and
we can consider when normal geodesics of adjacent vertices will intersect. Once we
have those intersection points, we will see that we can consider them as vertices of
Cf , giving us a definition for Cf .

Lemma 6.1. Let f be a discrete flat surface in H3 with lift E, as in (4.10), con-
structed using the discrete holomorphic function g. Let αpq be a cross ratio factor-
izing function for g. Then the normal geodesics in H3 emanating from two adjacent
vertices fp and fq will intersect if and only if λαpq < 0, in which case the inter-
section point is unique and is equidistant from fp and fq. Furthermore, even when
the two normal geodesics do not intersect, they still lie in a single common geodesic
plane.

Proof. Consider one edge pq. Applying an isometry of H3 if necessary, we may
assume without loss of generality that

Ep = I , fp =
1

detEp
EpĒ

T
p = I , Np =

(
1 0
0 −1

)
.

Then, with dgpq = gq − gp,

Eq =

(
1 dgpq

λαpq

dgpq
1

)
, detEq = 1 − λαpq .

Thus

fq =
1

1 − λαpq
EqĒ

T
q and Nq =

1

1 − λαpq
Eq

(
1 0
0 −1

)
ĒT

q .

The condition for the two normal geodesics to intersect is that there exist reals t1
and t2 so that

cosh t1 ·
(

1 0
0 1

)
+sinh t1 ·

(
1 0
0 −1

)
=

cosh t2
1 − λαpq

EqĒ
T
q +

sinh t2
1 − λαpq

Eq

(
1 0
0 −1

)
ĒT

q .

In other words (we now abbreviate dgpq to dg, and αpq to α),

(1 − λα)

(
cosh t1 + sinh t1 0

0 cosh t1 − sinh t1

)

= cosh t2 · EqĒ
T
q + sinh t2 · Eq

(
1 0
0 −1

)
ĒT

q

= cosh t2 ·
(

1 + |dg|2 λα
dg

+ dg
λα
dg + dg 1 + λ2α2

|dg|2

)
+ sinh t2 ·

(
1 − |dg|2 λα

dg
− dg

λα
dg − dg λ2α2

|dg|2 − 1

)
.

There exists a t2 so that this last sum on the right-hand side is a diagonal matrix
if and only if ∣∣∣∣λα− |dg|2

λα + |dg|2

∣∣∣∣ > 1 .
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So the normal lines intersect in H3 if and only if

|λα− |dg|2| > |λα + |dg|2| .

This is equivalent to

λα < 0 ,

and then t2 satisfies

sinh(t2) =
|dg|2 + λα√
−4λα|dg|

, cosh(t2) =
|dg|2 − λα√
−4λα|dg|

.

Now, to get the diagonal terms in the above matrix equation to match, we want t1
such that

cosh(t1) =
1

2(1 − λα)

[(
2 + |dg|2 +

λ2α2

|dg|2

)
cosh t2 +

(
λ2α2

|dg|2 − |dg|2
)

sinh t2

]
,

sinh(t1) =
1

2(1 − λα)

[(
2 − |dg|2 − λ2α2

|dg|2

)
sinh t2 +

(
|dg|2 − λ2α2

|dg|2

)
cosh t2

]
.

Such a t1 does exist, and in fact a computation shows that this t1 is equal to t2.
Now the sign of t2 = t1 determines which side of the quadrilateral the intersection

lies on, and t2 = t1 > 0 if and only if |dg|2 + λα > 0.
Note that because t1 = t2, the distance from the intersection point of the normal

lines to either of fp and fq is the same.
By a further isometry of H3 that preserves fp and Np, we may change g to eiθg

for some constant θ ∈ R. Thus without loss of generality we may assume dgpq ∈ R.
It is then clear from the above equations that the two geodesics emanating in the
normal directions from fp and fq both lie in the geodesic plane {x2 = 0}∩H3 of H3,
with H3 represented as in Section 3.1. This proves the last claim of the lemma. �

Remark 6.2. By an argument similar to that of the proof of Lemma 6.1, but simpler,
we also have the following statements: Let f be a discrete flat surface in H3 with
lift E, as in (4.10), constructed using the discrete holomorphic function g. Let αpq

be a cross ratio factorizing function for g. Let Np denote the normal as in (4.9) at
fp. Then the lines in R3,1 (not H3) emanating from two adjacent vertices fp and fq
in the directions of Np and Nq (respectively) will either be parallel or will intersect
at a unique point that is equidistant from fp and fq. The distance from either fp
or fq to that intersection point is∣∣∣∣ |gq − gp|2 + λαpq

|gq − gp|2 − λαpq

∣∣∣∣ .

This is true on each edge pq, regardless of the sign of λαpq. Furthermore, these two
lines stemming from fp and fq will not be parallel if

λ �= ±|gq − gp|2
αpq

.

Now, for all that follows, we introduce the following assumption.

Assumption: For g the discrete holomorphic map used to con-
struct a discrete flat surface, assume that all quadrilaterals in the
image of g in the complex plane are properly embedded.
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This implies the following properties:

(1) dgpq is never zero for any edge pq between adjacent vertices p and q in the
domain D. Note that this was already assumed in Section 2.3.

(2) dgpq and dgps are never parallel for any square of edge-length 1 with vertices
p, q, r, s in D. (If dgpq and dgps are parallel, then gp, gq, gr, gs all lie in one
line, which implies that the interior of the quadrilateral in the complex
plane is a half-plane, which is not properly embedded.)

Because the cross ratio for g is always negative, the term λαpq is negative on
exactly all of the horizontal edges in the domain D ⊂ Z2 of f , or exactly all of the
vertical edges. Applying a 90 degree rotation to the domain if necessary, we can,
and now do, assume without loss of generality that λαpq is negative if and only if
the edge pq is vertical in D.

Thus every vertical edge pq provides a unique intersection point of the normal
geodesics, which we denote by (Cf )pq. The domain DC of this new mesh is now
the collection of all vertical edges of D. If we let the vertical edges be represented
by their midpoints, then we can consider Cf to also be defined on a square grid,
but now a shifted one, i.e. DC ⊂ Z× (Z + 1

2 ).

Definition 6.3. We call the discrete surface

Cf = {(Cf )pq | pq is a vertical edge}
the caustic, or focal surface, of f .

This new discrete surface Cf is generally not a discrete flat surface, as the vertices
in the quadrilaterals of the caustic will generally not be concircular. However, it
has a number of interesting properties closely related to discrete flat surfaces, which
we will describe. The first property is stated in this lemma:

Lemma 6.4. The quadrilaterals of (Cf )pq lie in geodesic planes of H3.

Proof. This is clear from the geometry of the construction, and from the fact that
adjacent normal geodesics always lie in a common geodesic plane of H3, by Lemma
6.1. �
6.2. Discrete extrinsic curvature: First approach. Now that we have seen
the proof of Lemma 6.1, we are able to give one geometric justification for why we
can say the discrete surfaces in Section 4.3 are “flat”. We will give an argument
here showing the “discrete extrinsic curvature” is identically 1.

For a smooth flat surface given by a frame E solving (3.4), we find that the two
functions

k1 =
−1 + |gx|2
1 + |gx|2

, k2 =
1 + |gy|2
−1 + |gy|2

give the principal curvatures of the surface, and also give the inverses of the dis-
tances to the focal points in R3,1 of the curves in the surface along which either y
or x is constant. Here we are considering the focal points found in R3,1 (not H3),
but we are finding those focal points with respect to the normal directions to the
surface in H3 given by the normal vectors (3.3), which are actually tangent vectors
to H3 itself. Since the extrinsic curvature k1k2 is exactly 1, if k1 �= k2, we have
|k1| < 1 and |k2| > 1, and we have that
(6.3)

arctanh (k1)−arctanh
(
k−1
2

)
= arctanh

(
−1 + |gx|2
1 + |gx|2

)
−arctanh

(
−1 + |gy|2
1 + |gy|2

)
= 0 .
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This last right-hand equality, of course, is clear from the fact that |gx| = |gy|.
However, the right-hand equality encodes that the extrinsic curvature is exactly 1
in a way that can be applied to the discrete case, as follows: the corresponding
equation in the discrete case is given by the corresponding summation about the
four edges (assume λαpq = λαrs > 0 and λαqr = λαsp < 0 – the other case can be
handled similarly)

(6.4) arctanh

(
−λαpq + |gq − gp|2
λαpq + |gq − gp|2

)
− arctanh

(
λαqr + |gr − gq|2
−λαqr + |gr − gq|2

)

+arctanh

(
−λαrs + |gs − gr|2
λαrs + |gs − gr|2

)
− arctanh

(
λαsp + |gp − gs|2
−λαsp + |gp − gs|2

)
= 0

of each quadrilateral with vertices associated to p, q, r, s (given in counterclockwise
order about the quadrilateral in D) in the discrete surface. The analogous geometric
meaning of

−λαpq + |gq − gp|2
λαpq + |gq − gp|2

is preserved in the discrete case, as it is the inverse of the (oriented) distance from
either fp or fq to the intersection point of the geodesics in R3,1 stemming off of fp
and fq in the directions of Np and Nq, respectively (see Remark 6.2). Furthermore,
equation (6.4) follows immediately from the definition of the cross ratio factorizing
function α. In this sense, we can say that the “discrete extrinsic curvature” is
identically 1.

6.3. Discrete extrinsic curvature: Second approach. We now consider a sec-
ond approach to discrete extrinsic curvature. For a smooth surface of constant
extrinsic curvature 1, the infinitesimal ratio of the area of the Gauss map to the
area of the surface is exactly 1. So another way to give a notion that the “dis-
crete extrinsic curvature” be identically 1 for a discrete flat surface is to show the
analogous property in the discrete case. That is the purpose of the following lemma.

Lemma 6.5. Let f be a discrete flat surface in H
3 with normal map N . Consider

the vertices fp, fq, fr, fs of one quadrilateral (in H3) of the surface associated with
the quadrilateral with vertices p, q, r, s (given in counterclockwise order) in D.
These four vertices fp, fq, fr, fs also determine another quadrilateral Ff , now in

R3,1, again with vertices fp, fq, fr, fs, but now with geodesic edges fpfq, fqfr, frfs,

fsfp in R
3,1, and which is planar in R

3,1. Likewise, the normals Np, Nq, Nr, Ns

determine a planar quadrilateral FN in R3,1 with vertices Np, Nq, Nr, Ns and with

geodesic edges NpNq, NqNr, NrNs, NsNp in R
3,1.

These two quadrilaterals Ff and FN lie in parallel spacelike planes of R3,1 and
have the same area.

Proof. Because fp, fq, fr, fs lie in a circle C in H3, there exists a planar quadrilateral
Ff in R

3,1 with edges that are geodesics in R
3,1, and with vertices fp, fq, fr, fs.

Since Np and Nq have reflective symmetry with respect to the edge of Ff from fp
and fq (see Remark 6.2), and since similar symmetry holds on the other three edges
of Ff , we know that fp +Np, fq +Nq, fr +Nr, fs +Ns are the vertices of a planar
quadrilateral Ff+N with geodesic edges in R

3,1. It follows that Np, Nq, Nr, Ns are
then the vertices of a planar quadrilateral FN with geodesic edges in R3,1. In fact,
Ff , Ff+N and FN all lie in parallel spacelike planes.
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The goal is to show that Ff and FN have the same area. Since Ff and FN are
parallel, it is allowable to replace the metric of R3,1 with the standard positive-
definite Euclidean metric for R

4 and simply prove that Ff and FN have the same
area with respect to that metric. The advantage of this is that it allows us to use
known computational methods involving mixed areas. See [10], for example, for an
explanation of mixed areas.

Noting that f±N lies in the 3-dimensional light cone of R3,1, i.e. 〈f+N, f+N〉 =
〈f −N, f −N〉 = 0, we define the lightlike vectors

G1 = 1
2 (f + N) , G2 = 1

2 (f −N) .

(In fact, the normal geodesic at each vertex of f in H3 is asymptotic to the
lines in the light cone determined by G1 and G2.) The two concircular sets
{(G1)p, (G1)q, (G1)r, (G1)s} and {(G2)p, (G2)q, (G2)r, (G2)s} have the same real
cross ratio, so the two quadrilaterals in R3,1 that they determine are either congru-
ent or dual to each other. In fact, they are dual to each other, seen by examining
the four distances to intersection points amongst the normal lines in R3,1 extending
from fp, fq, fr and fs (two of which to one side of Ff are less than 1, and the other
two of which to the opposite side are greater than 1; see the proof of Lemma 6.1
and also Remark 6.2). It follows that the mixed area of G1 and G2 is zero [10]. We
then have, with “A” denoting area and “MA” denoting mixed area,

A(f) = A(G1 + G2) = A(G1) + A(G2) + 2MA(G1, G2) = A(G1) + A(G2) ,

A(N) = A(G1 −G2) = A(G1) + A(G2) − 2MA(G1, G2) = A(G1) + A(G2) .

Hence A(f) = A(N). �

Remark 6.6. The proof of Lemma 6.1 shows that for a vertical edge pq (of length 1)
of D, the geodesic edge fpfq, the geodesic through fp in the direction of Np and the
geodesic through fq in the direction of Nq form the boundary of a planar equilateral
triangle in H3. In particular, it follows that fp, fq, f

d
q and fd

p are concircular, for any

value of d. One can also show that fp, fq, f
d
q and fd

p are concircular even when pq is
a horizontal edge in D. This shows that the quadrilaterals formed by the two points
of an edge and the two points of the corresponding edge of a parallel flat surface are
always concircular. This in turn implies that a quadrilateral of the surface and the
corresponding quadrilateral on a parallel surface have a total of eight vertices all
lying on a common sphere - forming a cubical object with concircular sides. This
gives (see [5]) a discrete version of a triply orthogonal system, that is, a map from
Z3 or a subdomain of Z3 to R3 where all quadrilaterals are concircular.

6.4. A formula for the caustic. In Lemma 6.4 we gave one property of caustics
that is closely related to discrete flat surfaces. Here we give a second such type of
property, as seen in Theorem 6.7 below.

The equation for the lift E of f is

E−1
p Eq =

(
1 dgpq

λαpq

dgpq
1

)
.
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However, since the formula (4.8) for the surface has a mitigating scalar factor
1/ detE, we can change the equation above so that the potential matrix has deter-
minant one, without changing the resulting surface, so let us instead use:

Ẽp =
1√

detEp

Ep , fp = ẼpẼp

T
,

Ẽ−1
p Ẽq =

1√
1 − λαpq

(
1 dgpq

λαpq

dgpq
1

)
.

We also now assume that λ is sufficiently close to zero so that

|λαpq| < 1

for all edges pq.
We now define, for each vertical edge pq,

(6.5) E(Cf )pq = (aẼp + bẼq) ·

⎛
⎜⎝

√
dgpq

4
√

λαpq

0

0
4
√

λαpq√
dgpq

⎞
⎟⎠ · P ,

where a and b are any choice of non-negative reals such that a + b = 1 (recall
the definition of P in (6.1)). This is a natural discretization of the ECf

for the
case of smooth surfaces (see (6.1)), where we now must take a weighted average of
Ep and Eq, and we allow any choice of weighting (a, b). For the smooth case in
equation (3.4), the fourth root of the upper right term of E−1dE divided by the
lower left term gives the

√
g′ appearing in equation (6.1). For the discrete case in

equation (4.10), the fourth root of the upper right term of E−1
p (Eq − Ep) divided

by the lower left term gives the
√
dgpq/ 4

√
λαpq appearing here in equation (6.5).

This explains why we insert the 4
√
λαpq factors here. Note that 4

√
λαpq is not real,

because λαpq < 0.

Theorem 6.7. The formula

(6.6) Cf =
1

det(ECf
)
ECf

· ECf

T

for the discrete caustic holds for all vertical edges pq, and this formula does not
depend on the choice of a and b = 1 − a.

Proof. A computation gives

(ECf )pq(ECf )pq
T
=S · Ẽp

⎛
⎝

|dgpq |√
−λαpq

0

0

√
−λαpq

|dgpq |

⎞
⎠ ¯̃ET

p =
S

detEp
·Ep

⎛
⎝

|dgpq |√
−λαpq

0

0

√
−λαpq

|dgpq |

⎞
⎠ĒT

p ,

S = 1 + 2ab
1−

√
1− λαpq√

1− λαpq

.

The scalar factor S is the only part of (ECf
)pq(ECf

)pq
T

that depends on a and b,
but this scalar factor is irrelevant in the formula (6.6), so we see independence from
the choice of a and b. The result now follows from the proof of Lemma 6.1. �
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Remark 6.8. However, the choice of normal direction at the vertices of Cf does
depend on the choice of a and b, as the following equation shows:

(6.7) Npq = (ẼCf
)pq

(
1 0
0 −1

)
(ẼCf

)pq
T

= ẼpΩ
¯̃ET
p ,

where Ω is⎛
⎜⎜⎝

2b√
1−λαpq

(a+ b√
1−λαpq

)|dgpq |
((

a+ b√
1−λαpq

)2

+ b2

1−λαpq
λαpq

) √
dgpq√
dgpq((

a+ b√
1−λαpq

)2

+ b2

1−λαpq
λαpq

) √
dgpq√
dgpq

2b√
1−λαpq

(a+ b√
1−λαpq

)
λαpq

|dgpq|

⎞
⎟⎟⎠ .

Equation (6.7) implies that, for both horizontal and vertical edges, the adjacent
normal geodesics of the caustic typically do not intersect, for any generic choice of
a and b.

7. Singularities of discrete flat surfaces

The purpose of the following results is to show that the discrete caustics in
Section 6 have properties similar to the caustics in the smooth case.

In what follows, we will regard both the discrete flat surface f and its caustic Cf

as discrete surfaces that have edges and faces in H3 (not just vertices). Since there
is a unique geodesic line segment between any two points in H

3, the edge between
any two adjacent vertices of f is uniquely determined. The same is true of Cf .
Then, since the image of the four vertices of any given fundamental quadrilateral
in D (resp. in DC) under f (resp. Cf ) has image lying in a single geodesic plane
(see Theorem 4.6 and Lemma 6.4), the image of the fundamental quadrilateral in D
(resp. DC) can be regarded as a quadrilateral in a geodesic plane of H3 bounded by
four edges of f (resp. Cf ). This is the setting for the results given in this section.

In the case of a smooth flat surface (front) f in H3 and its smooth flat caustic Cf ,
every point in Cf is a point in the singular set of one of the parallel flat surfaces
of f . In Lemma 7.1, we are stating that every point in the discrete caustic Cf

of a discrete flat surface f is a point in the edge set of some parallel flat surface
of f . This, in conjuction with Theorem 7.3, suggests a natural candidate for the
definition of the singular set of a discrete flat surface. The proof of Lemma 7.1 is
immediate from the definitions of parallel surfaces and caustics.

Lemma 7.1. Let f be a discrete flat surface defined on a domain D ⊆ Z2 de-
termined by a discrete holomorphic function g : D → C with properly embedded
quadrilaterals, and let Cf be its caustic. Let P ∈ H3 be any point in Cf , so P lies
in the quadrilateral F of Cf that is determined by two adjacent vertices fp, fq of f
and the normal geodesics (which contain two opposite edges of F) in the directions
Np, Nq at fp, fq, respectively. (Thus pq will be a horizontal edge of D.) P can lie
in either the interior of F , or an edge of F , or could be a vertex of F .

Then P lies in the edge fd
p f

d
q of some parallel surface fd of f .

The next proposition will be used in the proof of Theorem 7.3.

Proposition 7.2. Let f be a discrete flat surface with normal N produced from
a discrete holomorphic function g with properly embedded quadrilaterals. Then for
all vertices p, Np is not tangent to any quadrilateral of f having vertex fp.
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Proof. Take a quadrilateral with vertices fp, fq, fr and fs of f so that pq is a hori-
zontal edge of D. We may make all of the assumptions in the proof of Lemma 6.1,
including the assumption that dgpq is real. Of course, the normal Np = diag(1,−1)
lies in the hyperplane {x2 = 0} of R3,1 (here we regard points of R3,1 as Hermitian
matrices as in Section 3.1), and so does the point fq, since dgpq ∈ R. Furthermore,
pq is a horizontal edge of D, so λαpq > 0, which implies that fq does not lie in the
geodesic in H3 containing fp and tangent to Np. However, g has properly embedded

quadrilaterals, so both dgps and
λαps

dgps
+dgps will not lie in R, and thus fs will not lie

in the hyperplane {x2 = 0}. It follows that Np will not be parallel to the geodesic
plane in H3 containing the two geodesics from fp to fq and from fp to fs. �

For a smooth flat surface (front) f and its caustic Cf , a parallel flat surface to
f , including f itself, will meet Cf along its singular set, and that singular set is
generally a graph in the combinatorial sense (whose edges consist of immersable
curves). Furthermore, all vertices of that combinatorial graph have valence at least
two. For example, cuspidal edges form the edges of this graph, and swallowtails
give vertices of this graph with valence two. In particular, no cuspidal edge can
simply stop at some point without continuing on to at least one other cuspidal edge
(as this would give a vertex of valence one). The following theorem shows that an
analogous property holds in the discrete case. Note that when we are speaking of
the vertices of this combinatorial graph in the theorem below, these vertices are
not the same as the vertices of the discrete flat surface, nor its discrete caustic, in
general.

Theorem 7.3. Let f be a discrete flat surface defined on a domain D ⊆ Z2 de-
termined by a discrete holomorphic function g : D → C with properly embedded
quadrilaterals, and let Cf be its caustic. Let fd be a parallel surface, and let Sd be
the set of all P ∈ H3 as in Lemma 7.1, for that value of d, and for any adjacent
endpoints p and q of a horizontal edge of D. Assume that no two adjacent vertices
of fd are ever equal, and that the faces of Cf are embedded.

Then Sd is a graph (in the combinatorial sense) with edges composed of geodesic
segments lying in the image in H3 of the horizontal edges of D under fd, and with
all vertices of Sd having valence at least two.

Remark 7.4. The snowman shown on the right-hand side of Figure 7 (see Example
4.12) provides an example to which Theorem 7.3 applies. The Airy example in
Section 5 also satisfies the conclusion of this theorem (see Figure 8), although it
does not actually satisfy the condition in the theorem that the faces of the caustic
be embedded.

Remark 7.5. At least one of the assumptions in Theorem 7.3 that the quadrilaterals
of Cf are embedded and that no two adjacent vertices of fd coincide is necessary.
Without them, the discrete hourglass, as seen in Figure 7 (see Example 4.12),
would provide a counterexample to the result. However, it is still an open question
whether both of those conditions are really needed. There are reasons why it is not
obvious that we can remove one of those two conditions. We explore those reasons
in Appendix 9.

Proof. We must show that all vertices of Sd have valence at least two. There are
essentially only two situations for which we need to show this, one obvious and one
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Figure 11. A graphical representation of the argument in the
proof of Theorem 7.3.

not obvious. The obvious case occurs when an entire edge fd
p f

d
q lies in Sd, and then

the result is clear. The non-obvious case that we now describe, where only a part

of fd
p f

d
q lies in Sd, is essentially only one situation, since any other non-obvious

situation can be reformulated in terms of the notation given below. Without loss
of generality, replacing fd by f if necessary, we may assume that d = 1.

Let D be a domain in Z
2 containing p1 = (0, 1), p2 = (0, 2), p3 = (0, 3), p4 =

(0, 4), q1 = (1, 1), q2 = (1, 2), q3 = (1, 3), q4 = (1, 4), and let g be a discrete
holomorphic function defined on D. Let f = f1 be the resulting discrete flat
surface. We have a normal direction defined at each vertex of f , which determines
normal geodesics 
pi

, 
qi at the vertices fpi
, fqi , respectively. Note that 
pi

and

qi never intersect (and thus fpi

and fqi are never equal), although they do lie in
the same geodesic plane, and that 
pi

and 
pi+1
(resp. 
qi and 
qi+1

) intersect at
a single point that we call Cf,pi,i+1

(resp. Cf,qi,i+1
), by Lemma 6.1. The point

Cf,pi,i+1
(resp. Cf,qi,i+1

) is equidistant from the two vertices fpi
and fpi+1

(resp.
fqi and fqi+1

), as in Lemma 6.1.
Now the caustic Cf has two quadrilaterals, described here by listing their vertices

in order about each quadrilateral:

F1 = (Cf,p12
, Cf,q12 , Cf,q23 , Cf,p23

) and F2 = (Cf,p23
, Cf,q23 , Cf,q34 , Cf,p34

) .

Let x be a point in the geodesic edge fp2
fq2 so that x also lies in the edge

Cf,p23
Cf,q23 . Since no two adjacent vertices of f are ever equal, it follows that x lies

strictly in the interior of fp2
fq2 . (See the left-hand side of Figure 11.) Thus, since

the face F1 of the caustic is embedded, there exists a half-open interval I = (y, x]
or I = [x, y) contained entirely in the interior of fp2

fq2 so that I lies in F1.
Thus x can become a vertex of the graph Sd=1. We wish to show that the valence

at x is at least two. This would mean that the visual representation is more like
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that of the right-hand side of Figure 11, where the quadrilateral of f with vertices
fp2

, fq2 , fq3 , fp3
is non-embedded. It suffices to show that there exists a half-open

interval Ĩ = (ỹ, x̃] or Ĩ = [x̃, ỹ) contained entirely in the interior of the geodesic
edge fp3

fq3 so that:

(1) Ĩ lies in the face F2 of the caustic, and
(2) x̃ = x.

Because x lies in both the geodesic plane determined by fp2
, fq2 , fq3 , fp3

and the
geodesic plane determined by fp3

, fq3 , Cf,q23 , Cf,p23
, and because Proposition 7.2

implies these two geodesic planes are not equal, x must also lie in the line deter-
mined by fp3

, fq3 . Then, because x lies in the embedded face F1, and because both

Cf,p23
Cf,q23 and fp3

fq3 lie in the geodesic planar region between 
p3
and 
q3 , x

must lie in the edge fp3
, fq3 itself. (Note that we have now proven that the quadri-

lateral with vertices fp2
, fq2 , fq3 and fp3

is not embedded, so in fact the visual
representation must be more like that of the right-hand side of Figure 11.)

Keeping in mind that x also lies in the edge Cf,p23
, Cf,q23 , then since both edges

fp3
, fq3 and Cf,p23

, Cf,q23 lie in the plane determined by F2, and since F2 is embed-

ded, we conclude existence of such an interval Ĩ with the required properties. �

The above Lemma 7.1 and Theorem 7.3 suggest that Sd has many of the right
properties to make it a natural candidate for the singular set of any discrete surface
fd in the parallel family of f .

Remark 7.6. We have chosen to consider the set Sd in the image f(D) of a discrete
flat surface, rather than in the domain D itself (as is usually done for the singular
set in the smooth case), because Sd becomes a collection of connected curves in
the image, while in the domain D it would jump discontinuously between points in
the lower and upper horizontal edges of quadrilaterals of D (as we have seen in the
above proof). However, one could remedy this by inserting vertical lines between
those lower and upper edge points in quadrilaterals of D, and then consider the set
in the domain.

8. Appendix: The discrete power function

In Figure 10, we have drawn some of the discrete surfaces in the linear Weingarten
family associated with the discretization of the Airy equation. For constructing
these graphics, we used the discrete holomorphic power function. We explain here
how to solve the difference equation for determining the discrete power function,
as follows:

crm,n =
(gm,n−gm+1,n)(gm+1,n+1−gm,n+1)
(gm+1,n−gm+1,n+1)(gm,n+1−gm,n)

= −1 ,

γgm,n = 2m
(gm+1,n−gm,n)(gm,n−gm−1,n)

gm+1,n−gm−1,n
+ 2n

(gm,n+1−gm,n)(gm,n−gm,n−1)
gm,n+1−gm,n−1

,

with the initial conditions

g0,0 = 0, g1,0 = 1, g0,1 = iγ .

Once we know gm,0 and g0,n, the full solution is given by solving the first equation
for the cross ratio.

We fix n and set
gm = gm,n and Gm = gm,n+1 .
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Then, it is seen from the cross ratio condition that

Gm+1 − gm+1 =
(gm+1 − gm)(Gm − gm) − (gm+1 − gm)2

(gm+1 − gm) + (Gm − gm)
.

If we set

am = Gm − gm and pm = gm+1 − gm ,

then {am} satisfies

am+1 =
pmam − p2m
am + pm

.

We define the recurrence relations:

bm+1 = pmbm − p2mcm,

cm+1 = bm + pmcm

so that

am =
bm
cm

.

The initial conditions are

c0 = 1 and b0 = g0,n+1 − g0,n .

The relation is written in the form(
bm+1

cm+1

)
=

(
pm −p2m
1 pm

)(
bm
cm

)

and the eigenvalues of the 2 × 2 matrix just above are (1 ± i)pm.
The difference equation satisfied by cm is

cm+2 − (pm + pm+1)cm+1 + 2p2mcm = 0 (c ≥ 0),

where c0 = 1 and c1 = g0,n+1 + g1,n − 2g0,n. Once we have determined {cm}, then

bm = cm+1 − pmcm and am =
bm
cm

determine

Gm = gm,n + am .

Then, using equation (2.4), we can determine gm,n for all non-negative m and n.
We have the following fact, which was also stated in [3]:

Lemma 8.1. Suppose that gm,n is the discrete holomorphic function solving (2.3)
and (2.4) for one choice of γ, and suppose ĝm,n is the same, but with γ replaced
by γ̂ = 2 − γ. Then gm,n and −ĝm,n satisfy equation (4.13) with αpq = 1 (resp.
αpq = −1) on horizontal (resp. vertical) edges.

Proof. That (4.13) holds on the edges (m, 0)(m + 1, 0) and (0, n)(0, n + 1) can be
easily confirmed from equation (2.4). Then an induction argument proves the result
on all other edges as well. �

Recently, [2] solved this system explicitly in terms of hypergeometric functions.
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9. Appendix: On a maximum principle for discrete holomorphic

functions

If g(z) is a smooth non-constant holomorphic function with respect to the usual
complex coordinate z for C, then log |g| is a harmonic function, and the maximum
principle for harmonic functions tells us that log |g| cannot have a local finite min-
imum at an interior point of the domain. Thus, if |g| has a local minimum at an
interior point z0, it must be that g(z0) = 0.

There are various ways to discretize the notions of holomorphicity and harmonic-
ity. See [4], [6], [9], [10], [23], [24], [25], [33], to name just a few of the possible
references – however, the history of this topic goes back much further than just
the references mentioned here. These ways do provide for discrete versions of the
maximum principle. The definition we have chosen here for discrete holomorphic
functions based on cross ratios, however, does not satisfy a particular simple-minded
discrete version of the maximum principle, as we can see by the first explicit ex-
ample below. A more sophisticated consideration is needed to produce a proper
discrete version of the maximum principle, but we do not discuss that here, as the
simplest questions are what are relevant to Theorem 7.3.

Example 9.1. Set D = {(m,n) | −1 ≤ m ≤ 1,−1 ≤ n ≤ 2}. Then, with i =
√
−1,

set

g0,−1 = 1
3 − 6i , g0,0 = 1

3 , g0,1 = 1
3 + i , g0,2 = 10

3 + 10i ,

g−1,0 = 1
3 − 1

2

√
35 + 1

2 i + 3 cos(− 2
5π) + 3i sin(− 2

5π) ,

g1,0 = 1
3 + 1

2

√
15 + 1

2 i + 2 cos(− 2
5π) + 2i sin(− 2

5π) ,

and extend g to all of D so that all cross ratios of g on D are −1. That is, take g so
that all α(m,n)(m+1,n) = −1 and all α(m,n)(m,n+1) = 1. Then we have the following
two properties:

(1) Amongst all vertices of D, |g| has a strict minimum of 1/3 at the interior
vertex (0, 0).

(2) Amongst all edges of D between adjacent vertices p and q (both horizontal
and vertical), |gq − gp| has a strict minimum of 1 at the interior edge from
(0, 0) to (0, 1).

Figure 12. Caustics Cf which meet fd for some d at a single
point, with g taken as in Examples 9.1 and 9.2. The caustics are
shown with lighter shading, and the fd are shown with darker
shading.
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Taking g as in the previous example, and taking λ = 1/100, we can produce the
flat surfaces fd and the caustic Cf . It turns out that the surface fd and the caustic
Cf intersect at just one point if d ≈ 1/10 is chosen correctly. See the left-hand side
of Figure 12. In this case, two adjacent vertices (coming from (0, 0) and (0, 1)) of
fd do coincide. However, the quadrilaterals of the caustic Cf are not embedded in
this case, so this example does not suffice to show that both assumptions at the
end of the first paragraph of Theorem 7.3 are truly needed.

In light of the equations in the proof of Lemma 6.1, a natural next step toward
understanding the role of coincidence of vertices of fd in Theorem 7.3 (and thus
toward understanding which assumptions the theorem really needs) is to consider a
discrete holomorphic function with the properties as in the next explicit example.

Example 9.2. Taking the same domain D as in the previous example, we now set

g0,−1 = 1 − 3
5 i , g0,0 = 0 , g0,1 = i , g0,2 = 1 + 8

5 i ,

g−1,0 = −
√

90 + 1
2 i + 19

2 cos(− 1
10π) + 19

2 i sin(− 1
10π) ,

g1,0 = −
√

6 + 1
2 i + 5

2 cos(− 3
5π) + 5

2 i sin(− 3
5π) ,

and, as in the previous example, we extend g to all of D so that all α(m,n)(m+1,n) =
−1 and all α(m,n)(m,n+1) = 1. Then we have the following two properties:

(1) Amongst all vertical edges of D between adjacent vertices p and q, |gq−gp|
has a strict minimum of 1 at the interior edge from (0, 0) to (0, 1).

(2) Amongst any three vertical edges pq = (−1, n)(−1, n+1) and pq = (0, n)(0,
n+1) and pq = (1, n)(1, n+1) at the same height in D, |gq−gp| is (strictly)
minimized at the central edge (0, n)(0, n + 1).

Using the function g in Example 9.2, one might hope that the resulting surface
fd would show the necessity of the assumption in Theorem 7.3 that the adjacent
vertices of fd do not coincide. However, it turns out that the quadrilaterals of Cf

are not embedded in this case as well. See the right-hand side of Figure 12, where
again λ = 1/100 and d (≈ 1/10) is taken so that the two vertices of fd coming from
(0, 0) and (0, 1) coincide.

Because of these subtleties, we leave open the question of whether just one of
the two conditions in Theorem 7.3 that

(1) the adjacent vertices of fd never coincide, and
(2) the caustic has embedded faces

would suffice.
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